Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jimena Ferraris is active.

Publication


Featured researches published by Jimena Ferraris.


American Journal of Physiology-endocrinology and Metabolism | 2009

Estrogens exert a rapid apoptotic action in anterior pituitary cells

Sandra Zárate; Gabriela Jaita; Verónica Zaldivar; Daniela Radl; Guadalupe Eijo; Jimena Ferraris; Daniel Pisera; Adriana Seilicovich

It is now accepted that estrogens not only stimulate lactotrope proliferation but also sensitize anterior pituitary cells to proapoptotic stimuli. In addition to their classical mechanism of action through binding to intracellular estrogen receptors (ERs), there is increasing evidence that estrogens exert rapid actions mediated by cell membrane-localized ERs (mERs). In the present study, we examined the involvement of membrane-initiated steroid signaling in the proapoptotic action of estradiol in primary cultures of anterior pituitary cells from ovariectomized rats by using estren, a synthetic estrogen with no effect on classical transcription and a cell-impermeable 17beta-estradiol conjugate (E2-BSA). Both compounds induced cell death of anterior pituitary cells after 60 min of incubation as assessed by flow cytometry and the [3-(4,5-dimethylthiazol-2-yl)]-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay. Estren, E2, and E2-BSA induced apoptosis of lactotropes and somatotropes as evaluated by the deoxynucleotidyltransferase-mediated dUTP nick end-labeling assay and immunodetection of prolactin (PRL) and growth hormone (GH). The proapoptotic effect of E2-BSA was abrogated by ICI-182,780, an antagonist of ERs. The expression of membrane-associated ERalpha was observed in PRL- and GH-bearing cells. Our results indicate that estradiol is able to exert a rapid apoptotic action in anterior pituitary cells, especially lactotropes and somatotropes, by a mechanism triggered by mERs. This mechanism could be involved in anterior pituitary cell turnover.


Neuroendocrinology | 2009

Estradiol Increases the Bax/Bcl-2 Ratio and Induces Apoptosis in the Anterior Pituitary Gland

Verónica Zaldivar; María L. Magri; Sandra Zárate; Gabriela Jaita; Guadalupe Eijo; Daniela Radl; Jimena Ferraris; Daniel Pisera; Adriana Seilicovich

Background: Estrogens are recognized as acting as modulators of pituitary cell renewal, sensitizing cells to mitogenic and apoptotic signals, thus participating in anterior pituitary homeostasis during the estrous cycle. The balance of pro- and antiapoptotic proteins of the Bcl-2 family is known to regulate cell survival and apoptosis. Aims: In order to understand the mechanisms underlying apoptosis during the estrous cycle, we evaluated the expression of the proapoptotic protein Bax and the antiapoptotic proteins Bcl-2 and Bcl-xL in the anterior pituitary gland in cycling female rats as well as the influence of estradiol on the expression of these proteins in anterior pituitary cells of ovariectomized rats. Methods/Results: As determined by Western blot, the expression of Bax was higher in anterior pituitary glands from rats at proestrus than at diestrus I, Bcl-2 protein levels showed no difference and Bcl-xL expression was lower, thus increasing the Bax/Bcl-2 ratio at proestrus. Assessed by annexin V binding and flow cytometry, the percentage of apoptotic anterior pituitary cells was higher in rats at proestrus than at diestrus I. Chronic estrogen treatment in ovariectomized rats enhanced the Bax/Bcl-2 ratio and induced apoptosis. Moreover, incubation of cultured anterior pituitary cells from ovariectomized rats with 17β-estradiol for 24 h increased the Bax/Bcl-2 ratio, decreased Bcl-xL expression and induced apoptosis. Conclusion: Our results demonstrate that estradiol increases the ratio between proapoptotic and antiapoptotic proteins of the Bcl-2 family. This effect could participate in the sensitizing action of estrogens to proapoptotic stimuli and therefore be involved in the high apoptotic rate observed at proestrus in the anterior pituitary gland.


American Journal of Physiology-endocrinology and Metabolism | 2012

Prolactin receptor antagonism in mouse anterior pituitary: effects on cell turnover and prolactin receptor expression

Jimena Ferraris; Florence Boutillon; Marie Bernadet; Adriana Seilicovich; Vincent Goffin; Daniel Pisera

Since anterior pituitary expresses prolactin receptors, prolactin secreted by lactotropes could exert autocrine or paracrine actions on anterior pituitary cells. In fact, it has been observed that prolactin inhibits its own expression by lactotropes. Our hypothesis is that prolactin participates in the control of anterior pituitary cell turnover. In the present study, we explored the action of prolactin on proliferation and apoptosis of anterior pituitary cells and its effect on the expression of the prolactin receptor. To determine the activity of endogenous prolactin, we evaluated the effect of the competitive prolactin receptor antagonist Δ1-9-G129R-hPRL in vivo, using transgenic mice that constitutively and systemically express this antagonist. The weight of the pituitary gland and the anterior pituitary proliferation index, determined by BrdU incorporation, were higher in transgenic mice expressing the antagonist than in wild-type littermates. In addition, blockade of prolactin receptor in vitro by Δ1-9-G129R-hPRL increased proliferation and inhibited apoptosis of somatolactotrope GH3 cells and of primary cultures of male rat anterior pituitary cells, including lactotropes. These results suggest that prolactin acts as an autocrine/paracrine antiproliferative and proapoptotic factor in the anterior pituitary gland. In addition, anterior pituitary expression of the long isoform of the prolactin receptor, measured by real-time PCR, increased about 10-fold in transgenic mice expressing the prolactin receptor antagonist, whereas only a modest increase in the S3 short-isoform expression was observed. These results suggest that endogenous prolactin may regulate its own biological actions in the anterior pituitary by inhibiting the expression of the long isoform of the prolactin receptor. In conclusion, our observations suggest that prolactin is involved in the maintenance of physiological cell renewal in the anterior pituitary. Alterations in this physiological role of prolactin could contribute to pituitary tumor development.


Neuroendocrinology | 2008

Apoptosis of Lactotrophs Induced by D2 Receptor Activation Is Estrogen Dependent

Daniela Radl; Sandra Zárate; Gabriela Jaita; Jimena Ferraris; Verónica Zaldivar; Guadalupe Eijo; Adriana Seilicovich; Daniel Pisera

Background/Aims: Dopamine (DA) inhibits prolactin release and reduces lactotroph proliferation by activating D2 receptors. DA and its metabolite, 6-hydroxydopamine (6-OHDA), induce apoptosis in different cell types. DA receptors and DA transporter (DAT) were implicated in this action. Considering that estradiol sensitizes anterior pituitary cells to proapoptotic stimuli, we investigated the effect of estradiol on the apoptotic action of DA and 6-OHDA in anterior pituitary cells, and the involvement of the D2 receptor and DAT in the proapoptotic effect of DA. Methods: Viability of cultured anterior pituitary cells from ovariectomized rats was determined by MTS assay. Apoptosis was evaluated by Annexin-V/flow cytometry and TUNEL. Lactotrophs were identified by immunocytochemistry. Results: DA induced apoptosis of lactotrophs in an estrogen-dependent manner. In contrast, estradiol was not required to trigger the apoptotic action of 6-OHDA. Cabergoline, a D2 receptor agonist, induced lactotroph apoptosis, while sulpiride, a D2 receptor antagonist, blocked DA-induced cell death. The blockade of DAT by GBR12909 did not affect the apoptotic action of DA, but inhibited 6-OHDA-induced apoptosis. Conclusion: These data show that DA, through D2 receptor activation, induces apoptosis of estrogen-sensitized anterior pituitary cells, and suggest that DA contributes to the control of lactotroph number not only by inhibiting proliferation but also by inducing apoptosis.


PLOS ONE | 2011

Dopamine-induced apoptosis of lactotropes is mediated by the short isoform of D2 receptor.

Daniela Radl; Jimena Ferraris; Valeria Romina Boti; Adriana Seilicovich; Dipak K. Sarkar; Daniel Pisera

Dopamine, through D2 receptor (D2R), is the major regulator of lactotrope function in the anterior pituitary gland. Both D2R isoforms, long (D2L) and short (D2S), are expressed in lactotropes. Although both isoforms can transduce dopamine signal, they differ in the mechanism that leads to cell response. The administration of D2R agonists, such as cabergoline, is the main pharmacological treatment for prolactinomas, but resistance to these drugs exists, which has been associated with alterations in D2R expression. We previously reported that dopamine and cabergoline induce apoptosis of lactotropes in primary culture in an estrogen-dependent manner. In this study we used an in vivo model to confirm the permissive action of estradiol in the apoptosis of anterior pituitary cells induced by D2R agonists. Administration of cabergoline to female rats induced apoptosis, measured by Annexin-V staining, in anterior pituitary gland from estradiol-treated rats but not from ovariectomized rats. To evaluate the participation of D2R isoforms in the apoptosis induced by dopamine we used lactotrope-derived PR1 cells stably transfected with expression vectors encoding D2L or D2S receptors. In the presence of estradiol, dopamine induced apoptosis, determined by ELISA and TUNEL assay, only in PR1-D2S cells. To study the role of p38 MAPK in apoptosis induced by D2R activation, anterior pituitary cells from primary culture or PR1-D2S were incubated with an inhibitor of the p38 MAPK pathway (SB203850). SB203580 blocked the apoptotic effect of D2R activation in lactotropes from primary cultures and PR1-D2S cells. Dopamine also induced p38 MAPK phosphorylation, determined by western blot, in PR1-D2S cells and estradiol enhanced this effect. These data suggest that, in the presence of estradiol, D2R agonists induce apoptosis of lactotropes by their interaction with D2S receptors and that p38 MAPK is involved in this process.


Neuroendocrinology | 2013

Use of Prolactin Receptor Antagonist to Better Understand Prolactin Regulation of Pituitary Homeostasis

Jimena Ferraris; Sophie Bernichtein; Daniel Pisera; Vincent Goffin

The anterior pituitary is permanently regulated by processes of apoptosis and proliferation in order to maintain tissue homeostasis. Several factors have been implicated in this regulation and lately, prolactin (PRL) has been included into that list. However, since PRL is secreted by anterior pituitary lactotropes, the actual outcome of its autocrine/paracrine actions on pituitary cells has remained difficult to assess. The availability of the pure PRL receptor antagonist Del1-9-G129R-hPRL has been helpful to circumvent this problem. While PRL has been traditionally associated with increased cell proliferation, recent studies revealed that this hormone actually induces apoptosis and decreases proliferation of anterior pituitary cells, by mechanisms involving the PRL receptor. The aim of this short review is to overview our current understanding of the regulation of pituitary homeostasis by PRL. Moreover, studies involving Del1-9-G129R-hPRL have helped anticipate to what extent future treatments involving PRL receptor inhibitors may interfere with processes regulated by PRL at the central level.


Neuroendocrinology | 2011

Estradiol Increases the Expression of TNF-α and TNF Receptor 1 in Lactotropes

Verónica Zaldivar; María L. Magri; Sandra Zárate; Gabriela Jaita; Guadalupe Eijo; Daniela Radl; Jimena Ferraris; Daniel Pisera; Adriana Seilicovich

Background: Estrogens are recognized modulators of pituitary cell renewal, sensitizing cells to mitogenic and apoptotic signals. Tumor necrosis factor-α (TNF-α) is a proinflammatory cytokine that plays an important role in tissue homeostasis modulating cell proliferation, differentiation and death. We previously demonstrated that TNF-α-induced apoptosis of anterior pituitary cells from female rats is estrogen-dependent and predominant in cells from rats at proestrus when estradiol levels are the highest. Aims: Considering that one of the mechanisms involved in the apoptotic action of estrogens can result from increased expression of cytokines and/or their receptors, the aim of the present study was to evaluate the effect of estrogens on the expression of TNF-α and its receptor, TNF receptor 1 (TNFR1), in anterior pituitary cells. Methods/Results: TNFR1 expression, determined by Western blot, was higher in anterior pituitary glands from rats at proestrus than at diestrus. Incubation of anterior pituitary cells from ovariectomized rats with 17β-estradiol enhanced TNFR1 protein expression. As determined by double immunocytochemistry, the expression of TNF-α and TNFR1 was detected in prolactin-, GH-, LH- and ACTH-bearing cells. 17β-estradiol increased the percentage of TNF-α and TNFR1-immunoreactive lactotropes but did not modify the number of GH-bearing cells expressing TNF-α or TNFR1. Conclusion: Our results demonstrate that estradiol increases the expression of TNF-α and TNFR1 in anterior pituitary cells, especially in lactotropes. The sensitizing action of estrogens to proapoptotic stimuli at proestrus in the anterior pituitary gland may involve changes in the expression of the TNF-α/TNFR1 system.


PLOS ONE | 2012

Estrogens induce expression of membrane-associated estrogen receptor α isoforms in lactotropes.

Sandra Zárate; Gabriela Jaita; Jimena Ferraris; Guadalupe Eijo; María L. Magri; Daniel Pisera; Adriana Seilicovich

Estrogens are key to anterior pituitary function, stimulating hormone release and controlling cell fate to achieve pituitary dynamic adaptation to changing physiological conditions. In addition to their classical mechanism of action through intracellular estrogen receptors (ERs), estrogens exert rapid actions via cell membrane-localized ERs (mERs). We previously showed that E2 exerts a rapid pro-apoptotic action in anterior pituitary cells, especially in lactotropes and somatotropes, through activation of mERs. In the present study, we examined the involvement of mERα in the rapid pro-apoptotic action of estradiol by TUNEL in primary cultures of anterior pituitary cells from ovariectomized rats using a cell-impermeable E2 conjugate (E2-BSA) and an ERα selective antagonist (MPP dihydrochloride). We studied mERα expression during the estrous cycle and its regulation by gonadal steroids in vivo by flow cytometry. We identified ERα variants in the plasma membrane of anterior pituitary cells during the estrous cycle and studied E2 regulation of these mERα variants in vitro by surface biotinylation and Western Blot. E2-BSA-induced apoptosis was abrogated by MPP in total anterior pituitary cells and lactotropes. In cycling rats, we detected a higher number of lactotropes and a lower number of somatotropes expressing mERα at proestrus than at diestrus. Acute E2 treatment increased the percentage of mERα-expressing lactotropes whereas it decreased the percentage of mERα-expressing somatotropes. We detected three mERα isoforms of 66, 39 and 22 kDa. Expression of mERα66 and mERα39 was higher at proestrus than at diestrus, and short-term E2 incubation increased expression of these two mERα variants. Our results indicate that the rapid apoptotic action exerted by E2 in lactotropes depends on mERα, probably full-length ERα and/or a 39 kDa ERα variant. Expression and activation of mERα variants in lactotropes could be one of the mechanisms through which E2 participates in anterior pituitary cell renewal during the estrous cycle.


Journal of Neuroendocrinology | 2011

Inhibition of nuclear factor-kappa B sensitises anterior pituitary cells to tumour necrosis factor-α- and lipopolysaccharide-induced apoptosis.

Guadalupe Eijo; Sandra Zárate; Gabriela Jaita; Jimena Ferraris; María L. Magri; Verónica Zaldivar; Daniela Radl; V. Boti; Daniel Pisera; Adriana Seilicovich

Nuclear factor‐kappa B (NF‐κB), an important pro‐inflammatory factor, is a crucial regulator of cell survival. Both lipopolysaccharide (LPS) and tumour necrosis factor (TNF)‐α activate NF‐κB signalling. Oestrogens were shown to suppress NF‐κB activation. Oestrogens exert a sensitising action to pro‐apoptotic stimuli such as LPS and TNF‐α in anterior pituitary cells. In the present study, we show by western blotting that 17β‐oestradiol (E2) decreases TNF‐α‐induced NF‐κB/p65 and p50 nuclear translocation in primary cultures of anterior pituitary cells from ovariectomised (OVX) rats. Also, the in vivo administration of E2 decreases LPS‐induced NF‐κB/p65 and p50 nuclear translocation. To investigate whether the inhibition of NF‐κB pathway sensitises anterior pituitary cells to pro‐apoptotic stimuli, we used an inhibitor of NF‐κB activity, BAY 11‐7082 (BAY). BAY, at a concentration that fails to induce apoptosis, has permissive action on TNF‐α‐induced apoptosis of lactotrophs and somatotrophs from OVX rats, as assessed by terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL). Pharmacological inhibition of NF‐κB signalling enhances E2‐sensitising effect to TNF‐α‐induced apoptosis in lactotrophs but not in somatotrophs. In vivo administration of BAY allowed LPS‐induced apoptosis in anterior pituitary cells from OVX rats (determined by fluorescence activated cell sorting). Furthermore, LPS‐induced expression of Bcl‐xL in pituitaries of OVX rats is decreased by E2 administration. Our results show that inhibition of the NF‐κB signalling pathway sensitises anterior pituitary cells to the pro‐apoptotic action of LPS and TNF‐α. Because E2 inhibits LPS‐ and TNF‐α‐activated NF‐κB nuclear translocation, the present study suggests that E2 sensitises anterior pituitary cells to TNF‐α‐ and LPS‐induced apoptosis by inhibiting NF‐κB activity.


PLOS ONE | 2011

N-terminal prolactin-derived fragments, vasoinhibins, are proapoptoptic and antiproliferative in the anterior pituitary.

Jimena Ferraris; Daniela Radl; Sandra Zárate; Gabriela Jaita; Guadalupe Eijo; Verónica Zaldivar; Carmen Clapp; Adriana Seilicovich; Daniel Pisera

The anterior pituitary is under a constant cell turnover modulated by gonadal steroids. In the rat, an increase in the rate of apoptosis occurs at proestrus whereas a peak of proliferation takes place at estrus. At proestrus, concomitant with the maximum rate of apoptosis, a peak in circulating levels of prolactin is observed. Prolactin can be cleaved to different N-terminal fragments, vasoinhibins, which are proapoptotic and antiproliferative factors for endothelial cells. It was reported that a 16 kDa vasoinhibin is produced in the rat anterior pituitary by cathepsin D. In the present study we investigated the anterior pituitary production of N-terminal prolactin-derived fragments along the estrous cycle and the involvement of estrogens in this process. In addition, we studied the effects of a recombinant vasoinhibin, 16 kDa prolactin, on anterior pituitary apoptosis and proliferation. We observed by Western Blot that N-terminal prolactin-derived fragments production in the anterior pituitary was higher at proestrus with respect to diestrus and that the content and release of these prolactin forms from anterior pituitary cells in culture were increased by estradiol. A recombinant preparation of 16 kDa prolactin induced apoptosis (determined by TUNEL assay and flow cytometry) of cultured anterior pituitary cells and lactotropes from ovariectomized rats only in the presence of estradiol, as previously reported for other proapoptotic factors in the anterior pituitary. In addition, 16 kDa prolactin decreased forskolin-induced proliferation (evaluated by BrdU incorporation) of rat total anterior pituitary cells and lactotropes in culture and decreased the proportion of cells in S-phase of the cell cycle (determined by flow cytometry). In conclusion, our study indicates that the anterior pituitary production of 16 kDa prolactin is variable along the estrous cycle and increased by estrogens. The antiproliferative and estradiol-dependent proapoptotic actions of this vasoinhibin may be involved in the control of anterior pituitary cell renewal.

Collaboration


Dive into the Jimena Ferraris's collaboration.

Top Co-Authors

Avatar

Daniel Pisera

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gabriela Jaita

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Sandra Zárate

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Guadalupe Eijo

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Daniela Radl

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

María L. Magri

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge