Jimmy S.H. Tsang
University of Hong Kong
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jimmy S.H. Tsang.
Applied and Environmental Microbiology | 2007
Manda Yu; Yun-wing Faan; Wilson Y. K. Chung; Jimmy S.H. Tsang
ABSTRACT Burkholderia cepacia MBA4 is a bacterium that can utilize 2-haloacids as carbon and energy sources for growth. It has been proposed that dehalogenase-associated permease mediates the uptake of haloacid. In this paper, we report the first cloning and characterization of such a haloacid permease. The structural gene, designated deh4p, was found 353 bases downstream of the dehalogenase gene deh4a. Quantitative analysis of the expression of deh4p showed that it was induced by monochloroacetate (MCA), to a level similar to the MCA-induced level of deh4a. The nucleotide sequence of deh4p was determined, and an open reading frame of 1,656 bp encoding a putative peptide of 552 amino acids was identified. Deh4p has a putative molecular weight of 59,414 and an isoelectric point of 9.88. Deh4p has the signatures of sugar transport proteins and integral membrane proteins of the major facilitator superfamily. Uptake of [14C]MCA into the cell was Deh4p dependent. Deh4p has apparent Kms of 5.5 and 8.9 μM and Vmaxs of 9.1 and 23.1 nmol mg−1 min−1 for acetate and MCA, respectively. A mutant with a transposon-inactivated haloacid operon failed to grow on MCA even when deh4a was provided in trans.
Journal of Evolutionary Biology | 2006
Yiong Huak Chan; Alvin C.M. Kwok; Jimmy S.H. Tsang; Joseph T.Y. Wong
Prokaryotic histone‐like proteins (Hlps) are abundant proteins found in bacterial and plastid nucleoids. Hlps are also found in the eukaryotic dinoflagellates and the apicomplexans, two major lineages of the Alveolata. It may be expected that Hlps of both groups were derived from the same ancestral Alveolates. However, our phylogenetic analyses suggest different origins for the dinoflagellate and the apicomplexan Hlps. The apicomplexan Hlps are affiliated with the cyanobacteria and probably originated from Hlps of the plastid genome. The dinoflagellate Hlps and the proteobacterial long Hlps form a clade that branch off from the node with the proteobacterial short Hlps.
Gene | 2009
Sin-Lui Yeung; Chiwai Cheng; Thomas K.O. Lui; Jimmy S.H. Tsang; Wing-Tat Chan; Boon Leong Lim
Purple acid phosphatases (PAP) are a group of dimetallic phosphohydrolase first identified in eukaryotes. Bioinformatics analysis revealed 57 prokaryotic PAP-like sequences in the genomes of 43 bacteria and 4 cyanobacteria species. A putative PAP gene (BcPAP) from the bacteria Burkholderia cenocepacia J2315 was chosen for further studies. Synteny analysis showed that this gene is present as an independent gene in most of the members of the genus Burkholderia. The predicted 561 a.a. polypeptide of BcPAP was found to harbour all the conserved motifs of the eukaryotic PAPs and an N-terminal twin-arginine translocation signal. Expression and biochemical characterization of BcPAP in Escherichia coli revealed that this enzyme has a relatively narrow substrate spectrum, preferably towards phosphotyrosine, phosphoserine and phosphoenolpyruvate. Interestingly, this enzyme was found to have a pH optimum at 8.5, rather than an acidic optima exhibited by eukaryotic PAPs. BcPAP contains a dimetallic ion centre composed of Fe and Zn, and site-directed mutagenesis confirmed that BcPAP utilizes the invariant residues for metal-ligation and catalysis. The enzyme is secreted by the wild type bacteria and its expression is regulated by the availability of orthophosphate. Our findings suggest that not all members in the PAP family have acidic pH optimum and broad substrate specificity.
BMC Molecular Biology | 2007
Percy Ho; Ka-Fai Kong; Yiong Huak Chan; Jimmy S.H. Tsang; Joseph T.Y. Wong
BackgroundS-Adenosylmethionine synthetase (AdoMetS) catalyzes the formation of S-Adenosylmethionine (AdoMet), the major methyl group donor in cells. AdoMet-mediated methylation of DNA is known to have regulatory effects on DNA transcription and chromosome structure. Transcription of environmental-responsive genes was demonstrated to be mediated via DNA methylation in dinoflagellates.ResultsA full-length cDNA encoding AdoMetS was cloned from the dinoflagellate Crypthecodinium cohnii. Phylogenetic analysis suggests that the CcAdoMetS gene, is associated with the clade of higher plant orthrologues, and not to the clade of the animal orthrologues. Surprisingly, three extra stretches of residues (8 to 19 amino acids) were found on CcAdoMetS, when compared to other members of this usually conserved protein family. Modeled on the bacterial AdeMetS, two of the extra loops are located close to the methionine binding site. Despite this, the CcAdoMetS was able to rescue the corresponding mutant of budding yeast. Southern analysis, coupled with methylation-sensitive and insensitive enzyme digestion of C. cohnii genomic DNA, demonstrated that the AdoMetS gene is itself methylated. The increase in digestibility of methylation-sensitive enzymes on AdoMet synthetase gene observed following the addition of DNA methylation inhibitors L-ethionine and 5-azacytidine suggests the presence of cytosine methylation sites within CcAdoMetS gene. During the cell cycle, both the transcript and protein levels of CcAdoMetS peaked at the G1 phase. L-ethionine was able to delay the cell cycle at the entry of S phase. A cell cycle delay at the exit of G2/M phase was induced by 5-azacytidine.ConclusionThe present study demonstrates a major role of AdoMet-mediated DNA methylation in the regulation of cell proliferation and that the CcAdoMetS gene is itself methylated.
BMC Microbiology | 2009
Yuk Man Tse; Manda Yu; Jimmy S.H. Tsang
Background2-Haloacids can be found in the natural environment as degradative products of natural and synthetic halogenated compounds. They can also be generated by disinfection of water and have been shown to be mutagenic and to inhibit glyceraldehyde-3-phosphate dehydrogenase activity. We have recently identified a novel haloacid permease Deh4p from a bromoacetate-degrading bacterium Burkholderia sp. MBA4. Comparative analyses suggested that Deh4p is a member of the Major Facilitator Superfamily (MFS), which includes thousands of membrane transporter proteins. Members of the MFS usually possess twelve putative transmembrane segments (TMS). Deh4p was predicted to have twelve TMS. In this study we characterized the topology of Deh4p with a PhoA-LacZ dual reporters system.ResultsThirty-six Deh4p-reporter recombinants were constructed and expressed in E. coli. Both PhoA and LacZ activities were determined in these cells. Strength indices were calculated to determine the locations of the reporters. The results mainly agree with the predicted model. However, two of the TMS were not verified. This lack of confirmation of the TMS, using a reporter, has been reported previously. Further comparative analysis of Deh4p has assigned it to the Metabolite:H+ Symporter (MHS) 2.A.1.6 family with twelve TMS. Deh4p exhibits many common features of the MHS family proteins. Deh4p is apparently a member of the MFS but with some atypical features.ConclusionThe PhoA-LacZ reporter system is convenient for analysis of the topology of membrane proteins. However, due to the limitation of the biological system, verification of some of the TMS of the protein was not successful. The present study also makes use of bioinformatic analysis to verify that the haloacid permease Deh4p of Burkholderia sp. MBA4 is a MFS protein but with atypical features.
Biochimica et Biophysica Acta | 2013
Xianbin Su; Jimmy S.H. Tsang
Bacterium Burkholderia sp. MBA4 can utilize haloacids as the sole carbon and energy source for growth. We have previously reported that a haloacid operon, encoding for a dehalogenase (Deh4a) and an associated permease (Deh4p), was responsible for the transformation and uptake of haloacids in MBA4. A disruption of deh4p in MBA4 caused a decrease in monochloroacetate (MCA) uptake, confirming its role as a haloacid transporter. However, this disruptant retained 68% of its MCA-uptake activity indicating the possibility of an alternative system. In this study, we report the identification of a second MCA-inducible haloacid transporter (Dehp2) in MBA4. Its function was confirmed by gene disruption and heterologous expression in Escherichia coli. A dehp2(-) mutant has 30% less, and an E. coli expressing Dehp2 has 40% more, of wildtype MCA-uptake activity. Quantitative RT-PCR illustrated that the minor loss of MCA-uptake activity in single disruptants of deh4p and dehp2 was partly due to a compensatory expression of the alternative gene. Competition assay and kinetics study revealed that Deh4p has a higher affinity for MCA while Dehp2 prefers chloropropionate. A deh4p(-)dehp2(-) double mutant retained 36% of MCA-uptake activity, indicating a robustness of the haloacid uptake systems. The MCA uptake activities mediated by Deh4p, Dehp2 and the uncharacterized system were completely abolished by protonophore carbonyl cyanide 3-chlorophenylhydrazone, suggesting that transmembrane electrochemical gradient is the driving force for MCA uptake.
BMC Microbiology | 2012
Xianbin Su; Ka-Fai Kong; Jimmy S.H. Tsang
BackgroundAcetate is a commonly used substrate for biosynthesis while monochloroacetate is a structurally similar compound but toxic and inhibits cell metabolism by blocking the citric acid cycle. In Burkholderia species MBA4 haloacetate was utilized as a carbon and energy source for growth. The degradation of haloacid was mediated by the production of an inducible dehalogenase. Recent studies have identified the presence of a concomitantly induced haloacetate-uptake activity in MBA4. This uptake activity has also been found to transport acetate. Since acetate transporters are commonly found in bacteria it is likely that haloacetate was transported by such a system in MBA4.ResultsThe haloacetate-uptake activity of MBA4 was found to be induced by monochloroacetate (MCA) and monobromoacetate (MBA). While the acetate-uptake activity was also induced by MCA and MBA, other alkanoates: acetate, propionate and 2-monochloropropionate (2MCPA) were also inducers. Competing solute analysis showed that acetate and propionate interrupted the acetate- and MCA- induced acetate-uptake activities. While MCA, MBA, 2MCPA, and butyrate have no effect on acetate uptake they could significantly quenched the MCA-induced MCA-uptake activity. Transmembrane electrochemical potential was shown to be a driving force for both acetate- and MCA- transport systems.ConclusionsHere we showed that acetate- and MCA- uptake in Burkholderia species MBA4 are two transport systems that have different induction patterns and substrate specificities. It is envisaged that the shapes and the three dimensional structures of the solutes determine their recognition or exclusion by the two transport systems.
Biotechnology and Bioengineering | 2013
Xianbin Su; Liyu Deng; Ka Fai Kong; Jimmy S.H. Tsang
Haloacids are environmental pollutant and can be transformed to non‐toxic alkanoic acids by microbial dehalogenase. Bacterium Burkholderia species MBA4 was enriched from soil for its ability to bioremediate haloacids such as mono‐chloroacetate (MCA), mono‐bromoacetate (MBA), 2‐mono‐chloropropionate, and 2‐mono‐bromopropionate. MBA4 produces an inducible dehalogenase Deh4a that catalyzes the dehalogenation process. The growth of MBA4 on haloacid also relies on the presence of a haloacid‐uptake system. Similar dehalogenase genes can be found in the genome of many related species. However, wildtype Burkholderia caribensis MWAP64, Burkholderia phymatum STM815, and Burkholderia xenovorans LB400 were not able to grow on MCA. When a plasmid containing the regulatory and structural gene of Deh4a was transformed to these species, they were able to grow on haloacid. The specific enzyme activities in these recombinants ranges from 2‐ to 30‐fold that of MBA4 in similar condition. Reverse transcription‐quantitative real‐time PCR showed that the relative transcript levels in these recombinant strains ranges from 9 to over 1,600 times that of MBA4 in similar condition. A recombinant has produced nearly five times of dehalogenase that MBA4 could ever achieve. While the expressions of Deh4a were more relaxed in these phylogenetically related species, an MCA‐uptake activity was found to be inducible. These metabolically engineered strains are better degraders than the haloacid‐enriched MBA4. Biotechnol. Bioeng. 2013;110: 2687–2696.
Applied Microbiology and Biotechnology | 2007
Yun-wing Faan; Manda Yu; Jimmy S.H. Tsang
We have developed a method for rapid screening of genes that affected the expression of dehalogenase IVa of Burkholderia cepacia MBA4. The promoter region of the dehalogenase gene was used to drive the expression of a beta-galactosidase gene. A plasmid containing this reporter was first electroporated into MBA4, and a Tn5 containing suicidal plasmid was introduced subsequently. The use of electroporation was necessary because Escherichia coli mediated transconjugation was ineffective in plasmid-carrying MBA4. The number of integrants generated was directly proportional to the amount of plasmid DNA used. Integrants with an elevated beta-galactosidase activity were isolated. Mutants with a disruption in a putative iron-transporter gene and in a putative response regulator receiver gene were identified. The basal dehalogenase transcript levels of these mutants were higher than the wild type. These mutants also grow faster than the wild type in chloroacetate-containing medium. This methodology of isolating regulatory mutants is theoretically feasible and convenient for any kinds of bacteria.
Genome Announcements | 2016
Yanling Pan; Ka Fai Kong; Jimmy S.H. Tsang
ABSTRACT We report the complete genome sequence of Burkholderia caribensis MWAP64 (LMG 18531), which was isolated from soil for its proficiency in producing large amounts of exopolysaccharide that help form microaggregates in a vertisol. There are four replicons with a total size of 9,032,119 bp.