Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jin-Ah Park is active.

Publication


Featured researches published by Jin-Ah Park.


Nature Materials | 2013

Propulsion and navigation within the advancing monolayer sheet

Jae Hun Kim; Xavier Serra-Picamal; Dhananjay Tambe; Enhua Zhou; Chan Young Young Park; Monirosadat Sadati; Jin-Ah Park; Ramaswamy Krishnan; Bomi Gweon; Emil Millet; James P. Butler; Xavier Trepat; Jeffrey J. Fredberg

As a wound heals, or a body plan forms, or a tumor invades, observed cellular motions within the advancing cell swarm are thought to stem from yet to be observed physical stresses that act in some direct and causal mechanical fashion. Here we show that such a relationship between motion and stress is far from direct. Using monolayer stress microscopy, we probed migration velocities, cellular tractions and intercellular stresses in an epithelial cell sheet advancing towards an island on which cells cannot adhere. We found that cells located near the island exert tractions that pull systematically towards this island regardless of whether the cells approach the island, migrate tangentially along its edge or, paradoxically, recede from it. This unanticipated cell-patterning motif, which we call kenotaxis, represents the robust and systematic mechanical drive of the cellular collective to fill unfilled space.


American Journal of Pathology | 2005

Human neutrophil elastase induces hypersecretion of mucin from well-differentiated human bronchial epithelial cells in vitro via a protein kinase Cδ-mediated mechanism

Jin-Ah Park; Fang He; Linda D. Martin; Yuehua Li; Brian N. Chorley; Kenneth B. Adler

The presence of mucus obstruction and neutrophil-predominant inflammation in several lung disorders, such as cystic fibrosis, suggests a relationship between neutrophils and excess mucus production. Mechanisms of human neutrophil elastase (HNE)-induced mucin secretion by well-differentiated normal human bronchial epithelial (NHBE) cells maintained in air/liquid interface culture were investigated. HNE increased mucin secretion in a concentration-dependent manner, with maximal stimulation (more than twofold) occurring within a short (15 minutes) time period. Mucins MUC 5 AC and MUC 5 B, but not MUC 2, were released in response to HNE. Stimulation of mucin secretion required partial elastase enzymatic activity and did not appear to involve a soluble product released by the cells. HNE-stimulated secretion involved activation of protein kinase C (PKC), as HNE exposure rapidly provoked PKC enzymatic activity that was attenuated by the general PKC inhibitors calphostin C and bisindoylmaleimide I. Of the different isoforms, PKCalpha, delta, zeta, lambda, iota, and epsilon were constitutively expressed in NHBE cells while PKCbeta, eta, and mu were PMA-inducible. PKCdelta was the only isoform to translocate from cytoplasm to membrane in response to HNE. Inhibition of PKCdelta attenuated HNE-mediated mucin secretion. The results suggest HNE stimulation of mucin release by human airway epithelial cells involves intracellular activation of PKC, specifically the delta isoform.


Nature Materials | 2015

Unjamming and cell shape in the asthmatic airway epithelium

Jin-Ah Park; Jae Hun Kim; Dapeng Bi; Jennifer A. Mitchel; Nader Taheri Qazvini; Kelan G. Tantisira; Chan Young Park; Maureen McGill; Sae Hoon Kim; Bomi Gweon; Jacob Notbohm; Robert L. Steward; Stephanie Burger; Scott H. Randell; Alvin T. Kho; Dhananjay Tambe; Corey Hardin; Stephanie A. Shore; Elliot Israel; David A. Weitz; Daniel J. Tschumperlin; Elizabeth P. Henske; Scott T. Weiss; M. Lisa Manning; James P. Butler; Jeffrey M. Drazen; Jeffrey J. Fredberg

From coffee beans flowing in a chute to cells remodelling in a living tissue, a wide variety of close-packed collective systems-both inert and living-have the potential to jam. The collective can sometimes flow like a fluid or jam and rigidify like a solid. The unjammed-to-jammed transition remains poorly understood, however, and structural properties characterizing these phases remain unknown. Using primary human bronchial epithelial cells, we show that the jamming transition in asthma is linked to cell shape, thus establishing in that system a structural criterion for cell jamming. Surprisingly, the collapse of critical scaling predicts a counter-intuitive relationship between jamming, cell shape and cell-cell adhesive stresses that is borne out by direct experimental observations. Cell shape thus provides a rigorous structural signature for classification and investigation of bronchial epithelial layer jamming in asthma, and potentially in any process in disease or development in which epithelial dynamics play a prominent role.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2012

Improved throughput traction microscopy reveals pivotal role for matrix stiffness in fibroblast contractility and TGF-β responsiveness

Aleksandar Marinkovic; Justin D. Mih; Jin-Ah Park; Fei Liu; Daniel J. Tschumperlin

Lung fibroblast functions such as matrix remodeling and activation of latent transforming growth factor-β1 (TGF-β1) are associated with expression of the myofibroblast phenotype and are directly linked to fibroblast capacity to generate force and deform the extracellular matrix. However, the study of fibroblast force-generating capacities through methods such as traction force microscopy is hindered by low throughput and time-consuming procedures. In this study, we improved at the detail level methods for higher-throughput traction measurements on polyacrylamide hydrogels using gel-surface-bound fluorescent beads to permit autofocusing and automated displacement mapping, and transduction of fibroblasts with a fluorescent label to streamline cell boundary identification. Together these advances substantially improve the throughput of traction microscopy and allow us to efficiently compute the forces exerted by lung fibroblasts on substrates spanning the stiffness range present in normal and fibrotic lung tissue. Our results reveal that lung fibroblasts dramatically alter the forces they transmit to the extracellular matrix as its stiffness changes, with very low forces generated on matrices as compliant as normal lung tissue. Moreover, exogenous TGF-β1 selectively accentuates tractions on stiff matrices, mimicking fibrotic lung, but not on physiological stiffness matrices, despite equivalent changes in Smad2/3 activation. Taken together, these results demonstrate a pivotal role for matrix mechanical properties in regulating baseline and TGF-β1-stimulated contraction of lung fibroblasts and suggest that stiff fibrotic lung tissue may promote myofibroblast activation through contractility-driven events, whereas normal lung tissue compliance may protect against such feedback amplification of fibroblast activation.


American Journal of Respiratory Cell and Molecular Biology | 2009

Chronic Intermittent Mechanical Stress Increases MUC5AC Protein Expression

Jin-Ah Park; Daniel J. Tschumperlin

Increased abundance of mucin secretory cells is a characteristic feature of the epithelium in asthma and other chronic airway diseases. We showed previously that the mechanical stresses of airway constriction, both in the intact mouse lung and a cell culture model, activate the epidermal growth factor receptor (EGFR), a known modulator of mucin expression in airway epithelial cells. Here we tested whether chronic, intermittent, short-duration compressive stress (30 cm H(2)O) is sufficient to increase the abundance of MUC5AC-positive cells and intracellular mucin levels in human bronchial epithelial cells cultured at an air-liquid interface. Compressive stress applied for 1 hour per day for 14 days significantly increased the percentage of cells staining positively for MUC5AC protein (22.0 +/- 3.8%, mean +/- SD) relative to unstimulated controls (8.6 +/- 2.6%), and similarly changed intracellular MUC5AC protein levels measured by Western and slot blotting. The effect of compressive stress was gradual, with significant changes in MUC5AC-positive cell numbers evident by Day 7, but required as little as 10 minutes of compressive stress daily. Daily treatment of cells with an EGFR kinase inhibitor (AG1478, 1 muM) significantly but incompletely attenuated the response to compressive stress. Complete attenuation could be accomplished by simultaneous treatment with the combination of AG1478 and a transforming growth factor (TGF)-beta(2) (1 microg/ml)-neutralizing antibody, or with anti-TGF-beta(2) alone. Our findings demonstrate that short duration episodes of mechanical stress, representative of those occurring during bronchoconstriction, are sufficient to increase goblet cell number and MUC5AC protein expression in bronchial epithelial cells in vitro. We propose that the mechanical environment present in asthma may fundamentally bias the composition of airway epithelial lining in favor of mucin secretory cells.


Journal of Biological Chemistry | 2010

The Chitinase-like Protein YKL-40 Is Secreted by Airway Epithelial Cells at Base Line and in Response to Compressive Mechanical Stress

Jin-Ah Park; Jeffrey M. Drazen; Daniel J. Tschumperlin

The chitinase-like protein YKL-40, encoded by the CHI3L1 gene, is a biomarker and functional effector of chronic inflammatory and allergic diseases. In the lung it is associated with asthma severity and reduced lung function. The cellular sources of YKL-40 in human airways and the mechanisms regulating YKL-40 expression are poorly understood. We previously showed that mechanical stress similar to that experienced during bronchoconstriction triggers epithelial cell signaling through epidermal growth factor receptor (EGFR), fibrotic mediator release, and goblet cell hyperplasia consistent with airway remodeling in asthma. We now show that well differentiated normal human bronchial epithelial cells express CHI3L1 and secrete YKL-40 under base-line culture conditions. Mechanical stress (30-cm H2O transcellular compressive stress) applied for 3 h induces CHI3L1 expression by ∼4-fold compared with time matched controls, resulting in increased secretion of YKL-40 by 3.6-fold 24 h after onset of the 3-h stimulus. Inhibition of EGFR or MEK1/2 (ERK kinase) significantly but incompletely attenuates mechanical stress-induced up-regulation of CHI3L1 expression in normal human bronchial epithelial cells. Direct activation of EGFR utilizing EGF-family ligands induces CHI3L1 expression. Our results reveal that human airway epithelial cells are a source of YKL-40 and demonstrate that mechanical stress potently induces CHI3L1 expression leading to increased secretion of YKL-40 protein in an EGFR and MEK1/2-dependent pathway. In the asthmatic airway mechanical stress may contribute to enhanced YKL-40 levels.


Journal of Cell Science | 2016

Collective migration and cell jamming in asthma, cancer and development

Jin-Ah Park; Lior Atia; Jennifer A. Mitchel; Jeffrey J. Fredberg; James P. Butler

ABSTRACT Collective cellular migration within the epithelial layer impacts upon development, wound healing and cancer invasion, but remains poorly understood. Prevailing conceptual frameworks tend to focus on the isolated role of each particular underlying factor – taken one at a time or at most a few at a time – and thus might not be tailored to describe a cellular collective that embodies a wide palette of physical and molecular interactions that are both strong and complex. To bridge this gap, we shift the spotlight to the emerging concept of cell jamming, which points to only a small set of parameters that govern when a cellular collective might jam and rigidify like a solid, or instead unjam and flow like a fluid. As gateways to cellular migration, the unjamming transition (UJT) and the epithelial-to-mesenchymal transition (EMT) share certain superficial similarities, but their congruence – or lack thereof – remains unclear. In this Commentary, we discuss aspects of cell jamming, its established role in human epithelial cell layers derived from the airways of non-asthmatic and asthmatic donors, and its speculative but emerging roles in development and cancer cell invasion. Summary: In development and wound repair, cellular unjamming promotes cooperative cellular migration, whereas in cancer invasion, asthma and aberrant wound repair, it unleashes remarkably asocial cellular misbehavior.


American Journal of Respiratory Cell and Molecular Biology | 2011

TNF-α–Converting Enzyme/A Disintegrin and Metalloprotease−17 Mediates Mechanotransduction in Murine Tracheal Epithelial Cells

Tetsuya Shiomi; Daniel J. Tschumperlin; Jin-Ah Park; Susan W. Sunnarborg; Keisuke Horiuchi; Carl P. Blobel; Jeffrey M. Drazen

Bronchoconstriction applies compressive stress to airway epithelial cells. We show that the application of compressive stress to cultured murine tracheal epithelial cells elicits the increased phosphorylation of extracellular signal-regulated kinase (ERK) and Akt through an epidermal growth factor receptor (EGFR)-dependent process, consistent with previous observations of the bronchoconstriction-induced activation of EGFR in both human and murine airways. Mechanotransduction requires metalloprotease activity, indicating a pivotal role for proteolytic EGF-family ligand shedding. However, cells derived from mice with targeted deletions of the EGFR ligands Tgfα and Hb-egf showed only modest decreases in responses, even when combined with neutralizing antibodies to the EGFR ligands epiregulin and amphiregulin, suggesting redundant or compensatory roles for individual EGF family members in mechanotransduction. In contrast, cells harvested from mice with a conditional deletion of the gene encoding the TNF-α-converting enzyme (TACE/ADAM17), a sheddase for multiple EGF-family proligands, displayed a near-complete attenuation of ERK and Akt phosphorylation responses and compressive stress-induced gene regulation. Our data provide strong evidence that TACE plays a critical central role in the transduction of compressive stress.


The FASEB Journal | 2010

An EGFR autocrine loop encodes a slow-reacting but dominant mode of mechanotransduction in a polarized epithelium

Nikola Kojic; Euiheon Chung; Alvin T. Kho; Jin-Ah Park; Austin Huang; Peter T. C. So; Daniel J. Tschumperlin

The mechanical landscape in biological systems can be complex and dynamic, with contrasting sustained and fluctuating loads regularly superposed within the same tissue. How resident cells discriminate between these scenarios to respond accordingly remains largely unknown. Here, we show that a step increase in compressive stress of physiological magnitude shrinks the lateral intercellular space between bronchial epithelial cells, but does so with strikingly slow exponential kinetics (time constant ~110 s). We confirm that epidermal growth factor (EGF)‐family ligands are constitutively shed into the intercellular space and demonstrate that a step increase in compressive stress enhances EGF receptor (EGFR) phosphorylation with magnitude and onset kinetics closely matching those predicted by constant‐rate ligand shedding in a slowly shrinking intercellular geometry. Despite the modest degree and slow nature of EGFR activation evoked by compressive stress, we find that the majority of transcriptomic responses to sustained mechanical loading require ongoing activity of this autocrine loop, indicating a dominant role for mechanotransduction through autocrine EGFR signaling in this context. A slow deformation response to a step increase in loading, accompanied by synchronous increases in ligand concentration and EGFR activation, provides one means for cells to mount a selective and context‐appropriate response to a sustained change in mechanical environment.—Kojic, N., Chung, E., Kho, A. T., Park, J.‐A., Huang, A., So, P. T. C., Tschumperlin, D. J. An EGFR autocrine loop encodes a slow‐reacting but dominant mode of mechano‐transduction in a polarized epithelium. FASEB J. 24, 1604‐1615 (2010). www.fasebj.org


Physiology | 2015

Putting the Squeeze on Airway Epithelia

Jin-Ah Park; Jeffrey J. Fredberg; Jeffrey M. Drazen

Asthma is characterized by chronic inflammation, airway hyperresponsiveness, and progressive airway remodeling. The airway epithelium is known to play a critical role in the initiation and perpetuation of these processes. Here, we review how excessive epithelial stress generated by bronchoconstriction is sufficient to induce airway remodeling, even in the absence of inflammatory cells.

Collaboration


Dive into the Jin-Ah Park's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott H. Randell

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dapeng Bi

Northeastern University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge