Jin-Ching Lee
Kaohsiung Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jin-Ching Lee.
The Scientific World Journal | 2013
Jen-Yang Tang; Jin-Ching Lee; Yung-Ting Chang; Ming-Feng Hou; Hurng-Wern Huang; Chih-Chuang Liaw; Hsueh-Wei Chang
Long noncoding RNA (lncRNA) function is described in terms of related gene expressions, diseases, and cancers as well as their polymorphisms. Potential modulators of lncRNA function, including clinical drugs, natural products, and derivatives, are discussed, and bioinformatic resources are summarized. The improving knowledge of the lncRNA regulatory network has implications not only in gene expression, diseases, and cancers, but also in the development of lncRNA-based pharmacology.
PLOS ONE | 2013
Ying-Ting Lin; Yu-Hsuan Wu; Chin-Kai Tseng; Chun-Kuang Lin; Wei-Chun Chen; Yao-Chin Hsu; Jin-Ching Lee
Chronic hepatitis C virus (HCV) infection is the leading risk factor for hepatocellular carcinoma (HCC) and chronic liver disease worldwide. Green tea, in addition to being consumed as a healthy beverage, contains phenolic catechins that have been used as medicinal substances. In the present study, we illustrated that the epicatechin isomers (+)-epicatechin and (−)-epicatechin concentration-dependently inhibited HCV replication at nontoxic concentrations by using in vitro cell-based HCV replicon and JFH-1 infectious systems. In addition to significantly suppressing virus-induced cyclooxygenase-2 (COX-2) expression, our results revealed that the anti-HCV activity of the epicatechin isomers occurred through the down-regulation of COX-2. Furthermore, both the epicatechin isomers additively inhibited HCV replication in combination with either interferon-α or viral enzyme inhibitors [2′-C-methylcytidine (NM-107) or telaprevir]. They also had prominent anti-inflammatory effects by inhibiting the gene expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and inducible nitrite oxide synthase as well as the COX-2 in viral protein-expressing hepatoma Huh-7 cells. Collectively, (+)-epicatechin and (−)-epicatechin may serve as therapeutic supplements for treating HCV-related diseases.
Molecules | 2012
Jing-Iong Yang; Chi-Chen Yeh; Jin-Ching Lee; Szu-Cheng Yi; Hurng-Wern Huang; Chao-Neng Tseng; Hsueh-Wei Chang
Potential antioxidant properties of an aqueous extract of the edible red seaweed Gracilaria tenuistipitata (AEGT) against oxidative DNA damage were evaluated. The AEGT revealed several antioxidant molecules, including phenolics, flavonoids and ascorbic acid. In a cell-free assay, the extract exhibited 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity that significantly reduced H2O2-induced plasmid DNA breaks in a dose-response manner (P < 0.001). The AEGT also suppressed H2O2-induced oxidative DNA damage in H1299 cells by reducing the percentage of damaged DNA in a dose-response manner (P < 0.001) as measured by a modified alkaline comet-nuclear extract (comet-NE) assay. The MTT assay results showed that AEGT confers significant protection against H2O2-induced cytotoxicity and that AEGT itself is not cytotoxic (P < 0.001). Moreover, H2O2-induced cell cycle G2/M arrest was significantly released when cells were co-treated with different concentrations of AEGT (P < 0.001). Taken together, these findings suggest that edible red algae Gracilaria water extract can prevent H2O2-induced oxidative DNA damage and its related cellular responses.
PLOS ONE | 2014
Chin-Kai Tseng; Chun-Kuang Lin; Hsueh-Wei Chang; Yu-Hsuan Wu; Feng-Lin Yen; Fang Rong Chang; Wei-Chun Chen; Chi-Chen Yeh; Jin-Ching Lee
In addition to the previous investigations of bioactivity of aqueous extract of the edible Gracilaria tenuistipitata (AEGT) against H2O2-induced DNA damage and hepatitis C virus replication, the purpose of this study is to evaluate the potential therapeutic properties of AEGT against inflammation and hepatotoxicity using lipopolysaccharide (LPS)-stimulated mouse RAW 264.7 cells, primary rat peritoneal macrophages and carbon tetrachloride (CCl4)-induced acute hepatitis model in rats. AEGT concentration-dependently inhibited the elevated RNA and protein levels of inducible nitric oxide synthase and cyclooxygenase-2, thereby reducing nitric oxide and prostaglandin E2 levels, respectively. Moreover, AEGT significantly suppressed the production of LPS-induced proinflammatory cytokines, including interleukin (IL)-1β, IL-6 and tumor necrosis factor-α. These inhibitory effects were associated with the suppression of nuclear factor-kappa B activation and mitogen-activated protein kinase phosphorylation by AEGT in LPS-stimulated cells. In addition, we highlighted the hepatoprotective and curative effects of AEGT in a rat model of CCl4-intoxicated acute liver injury, which was evident from reduction in the elevated serum aspartate aminotransferase and alanine aminotransferase levels as well as amelioration of histological damage by pre-treatment or post-treatment of AEGT. In conclusion, the results demonstrate that AEGT may serve as a potential supplement in the prevention or amelioration of inflammatory diseases.
Journal of Viral Hepatitis | 2011
Jin-Ching Lee; Chih-Hua Tseng; Shou Fang Wu; Fang Rong Chang; Chien-Chih Chiu; Yang Chang Wu
Summary. Chronic hepatitis C virus (HCV) infection is associated with chronic inflammation of liver, which leads to the development of cirrhosis and hepatocellular carcinoma (HCC). Because of severe side effects and only a 50–70% cure rate in genotype 1 HCV‐infected patients upon current standard treatment with pegylated interferon‐α plus ribavirin, new therapeutic regimens are still needed. San‐Huang‐Xie‐Xin‐Tang (SHXT) is a transitional Chinese herbal formula, composed of Rhei rhizoma, Scutellaria radix and Coptidis rhizome, and possesses anti‐inflammatory effect. Here, we describe a (+)‐catechin‐containing fraction extracted from SHXT, referred as SHXT‐frC, exhibited effective inhibition of HCV replication, with selectivity index value (SI; CC50/EC50) of 84, and displayed synergistic anti‐HCV effects when combined with interferon‐α, HCV protease inhibitor telaprevir or polymerase inhibitor 2′‐C‐methylcytidine. The activation of factor‐κB (NF‐κB) and cyclooxygenase‐2 (COX‐2) signalling pathway has particular relevance to HCV‐associated HCC. SHXT‐frC treatment also caused a concentration‐dependent decrease in the induction of COX‐2 and NF‐κB expression caused by either HCV replication or HCV NS5A protein. Collectively, SHXT‐frC could be an adjuvant treatment for patients with HCV‐induced liver diseases.
PLOS ONE | 2013
Kuan-Jen Chen; Chin-Kai Tseng; Fang Rong Chang; Jin-Iong Yang; Chi-Chen Yeh; Wei-Chun Chen; Shou-Fang Wu; Hsueh-Wei Chang; Jin-Ching Lee
Hepatitis C virus (HCV) is an important human pathogen leading to hepatocellular carcinoma. Using an in vitro cell-based HCV replicon and JFH-1 infection system, we demonstrated that an aqueous extract of the seaweed Gracilaria tenuistipitata (AEGT) concentration-dependently inhibited HCV replication at nontoxic concentrations. AEGT synergistically enhanced interferon-α (IFN-α) anti-HCV activity in a combination treatment. We found that AEGT also significantly suppressed virus-induced cyclooxygenase-2 (COX-2) expression at promoter transactivation and protein levels. Notably, addition of exogenous COX-2 expression in AEGT-treated HCV replicon cells gradually abolished AEGT anti-HCV activity, suggesting that COX-2 down-regulation was responsible for AEGT antiviral effects. Furthermore, we highlighted the inhibitory effect of AEGT in HCV-induced pro-inflammatory gene expression such as the expression of tumour necrosis factor-α, interleukin-1β, inducible nitrite oxide synthase and COX-2 in a concentration-dependent manner to evaluate the potential therapeutic supplement in the management of patients with chronic HCV infections.
Analytical Biochemistry | 2008
Jin-Ching Lee; Shin-Ru Shih; Ten-Yuan Chang; Huan-Yi Tseng; Ya-Feng Shih; Kuei-Jung Yen; Wei-Chun Chen; Jiun-Jie Shie; Jim-Min Fang; Po-Huang Liang; Yu-Sheng Chao; John T-A. Hsu
Although several cell-based reporter assays have been developed for screening of viral protease inhibitors, most of these assays have a significant limitation in that numerous false positives can be generated for the compounds that are interfering with reporter gene detection due to the cellular viability. To improve, we developed a mammalian cell-based assay based on the reverse two-hybrid system to monitor the proteolytic activity of human enterovirus 71 (EV71) 3C protease and to validate the cytotoxicity of compounds at the same time. In this system, the GAL4 DNA binding domain (M3) and transactivation domain (VP16) were fused, in-frame, with 3C or 3C(mut). The 3C(mut) was an inactivated protease with mutations at the predicted catalytic triad. The reporter plasmid contains a secreted alkaline phosphatase (SEAP) gene under the control of GAL4 activating sequences. We demonstrated that M3-3C-VP16 failed to turn on the expression of SEAP due to the separation of M3 and the VP16 domains by self-cleavage of 3C. In contrast, SEAP expression was induced by the M3-3C(mut)-VP16 fusion protein or the M3-3C-VP16 in cells treated with AG7088, a potent inhibitor of human rhinoviruses (HRVs) 3C protease. Potentially, this protease detection system should greatly facilitate anti-EV71 drug discovery through a high-throughput screening.
Scientific Reports | 2017
Chun-Kuang Lin; Chin-Kai Tseng; Yu-Hsuan Wu; Chih-Chuang Liaw; Chun-Yu Lin; Chung-Hao Huang; Yen-Hsu Chen; Jin-Ching Lee
Cyclooxygenase-2 (COX-2) is one of the important mediators of inflammation in response to viral infection, and it contributes to viral replication, for example, cytomegalovirus or hepatitis C virus replication. The role of COX-2 in dengue virus (DENV) replication remains unclear. In the present study, we observed an increased level of COX-2 in patients with dengue fever compared with healthy donors. Consistent with the clinical data, an elevated level of COX-2 expression was also observed in DENV-infected ICR suckling mice. Using cell-based experiments, we revealed that DENV-2 infection significantly induced COX-2 expression and prostaglandin E2 (PGE2) production in human hepatoma Huh-7 cells. The exogenous expression of COX-2 or PGE2 treatment dose-dependently enhanced DENV-2 replication. In contrast, COX-2 gene silencing and catalytic inhibition sufficiently suppressed DENV-2 replication. In an ICR suckling mouse model, we identified that the COX-2 inhibitor NS398 protected mice from succumbing to life-threatening DENV-2 infection. By using COX-2 promoter-based analysis and specific inhibitors against signaling molecules, we identified that NF-κB and MAPK/JNK are critical factors for DENV-2-induced COX-2 expression and viral replication. Altogether, our results reveal that COX-2 is an important factor for DENV replication and can serve as a potential target for developing therapeutic agents against DENV infection.
Organic Letters | 2015
Chih-Chuang Liaw; Yu-Liang Yang; Chun-Kuang Lin; Jin-Ching Lee; Wen-Ying Liao; Chia-Ning Shen; Jyh-Horng Sheu; Shih-Hsiung Wu
Two novel meroterpenoids, yaminterritrems A (1) and B (2), were isolated from Aspergillus terreus collected from hot spring zones in Yang-Ming Mountain, Taiwan, and cultured at 40 °C. The structures of 1 and 2 were elucidated by NMR, MS spectral and X-ray crystallographic analyses. The biosynthetic route for 1 and 2 involving the conversion of the sesquiterpene with phenyl-α-pyrone is proposed. Besides, 2 exhibited a dose-dependent inhibitory effect on COX-2 expression in LPS-stimulated RAW264.7 macrophages.
PLOS ONE | 2015
Wei-Chun Chen; Chin-Kai Tseng; Yen-Hsu Chen; Chun-Kuang Lin; Shih-hsien Hsu; Shen-Nien Wang; Jin-Ching Lee
Chronic hepatitis C virus (HCV) infection leads to intrahepatic inflammation and liver cell injury, which are considered a risk factor for virus-associated hepatitis, cirrhosis, and hepatocellular carcinoma worldwide. Inflammatory cytokines are critical components of the immune system and influence cellular signaling, and genetic imbalances. In this study, we found that cyclooxygenase-2 (COX-2) and interleukin-8 (IL-8) were significantly induced by HCV infection and HCV NS5A expression, and induction of COX-2 correlated with HCV-induced IL-8 production. We also found that the ERK and JNK signaling pathways were involved in the regulation of IL-8-mediated COX-2 induction in response to HCV infection. Using a promoter-linked reporter assay, we identified that the C/EBP regulatory element within the COX-2 promoter was the dominant factor responsible for the induction of COX-2 by HCV. Silencing C/EBP attenuated HCV-induced COX-2 expression. Our results revealed that HCV-induced inflammation promotes viral replication, providing new insights into the involvement of IL-8-mediated COX-2 induction in HCV replication.