Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jin Choul Chai is active.

Publication


Featured researches published by Jin Choul Chai.


Experimental and Molecular Medicine | 2012

Genome-scale DNA methylation pattern profiling of human bone marrow mesenchymal stem cells in long-term culture

Mi Ran Choi; Yong Ho In; Jungsun Park; Taesung Park; Kyoung Hwa Jung; Jin Choul Chai; Mi Kyung Chung; Young Seek Lee; Young Gyu Chai

Human bone marrow mesenchymal stem cells (MSCs) expanded in vitro exhibit not only a tendency to lose their proliferative potential, homing ability and telomere length but also genetic or epigenetic modifications, resulting in senescence. We compared differential methylation patterns of genes and miRNAs between early-passage [passage 5 (P5)] and late-passage (P15) cells and estimated the relationship between senescence and DNA methylation patterns. When we examined hypermethylated genes (methylation peak ≥ 2) at P5 or P15, 2,739 genes, including those related to fructose and mannose metabolism and calcium signaling pathways, and 2,587 genes, including those related to DNA replication, cell cycle and the PPAR signaling pathway, were hypermethylated at P5 and P15, respectively. There was common hypermethylation of 1,205 genes at both P5 and P15. In addition, genes that were hypermethylated at P5 (CPEB1, GMPPA, CDKN1A, TBX2, SMAD9 and MCM2) showed lower mRNA expression than did those hypermethylated at P15, whereas genes that were hypermethylated at P15 (MAML2, FEN1 and CDK4) showed lower mRNA expression than did those that were hypermethylated at P5, demonstrating that hypermethylation at DNA promoter regions inhibited gene expression and that hypomethylation increased gene expression. In the case of hypermethylation on miRNA, 27 miRNAs were hypermethylated at P5, whereas 44 miRNAs were hypermethylated at P15. These results show that hypermethylation increases at genes related to DNA replication, cell cycle and adipogenic differentiation due to long-term culture, which may in part affect MSC senescence.


PLOS ONE | 2015

Dual RNA Sequencing Reveals the Expression of Unique Transcriptomic Signatures in Lipopolysaccharide-Induced BV-2 Microglial Cells

Amitabh Das; Jin Choul Chai; Sun Hwa Kim; Kyoung Sun Park; Young Seek Lee; Kyoung Hwa Jung; Young Gyu Chai

Microglial cells become rapidly activated through interactions with pathogens, and the persistent activation of these cells is associated with various neurodegenerative diseases. Previous studies have investigated the transcriptomic signatures in microglia or macrophages using microarray technologies. However, this method has numerous restrictions, such as spatial biases, uneven probe properties, low sensitivity, and dependency on the probes spotted. To overcome this limitation and identify novel transcribed genes in response to LPS, we used RNA Sequencing (RNA-Seq) to determine the novel transcriptomic signatures in BV-2 microglial cells. Sequencing assessment and quality evaluation showed that approximately 263 and 319 genes (≥ 1.5 log2-fold), such as cytokines and chemokines, were strongly induced after 2 and 4 h, respectively, and the induction of several genes with unknown immunological functions was also observed. Importantly, we observed that previously unidentified transcription factors (TFs) (irf1, irf7, and irf9), histone demethylases (kdm4a) and DNA methyltransferases (dnmt3l) were significantly and selectively expressed in BV-2 microglial cells. The gene expression levels, transcription start sites (TSS), isoforms, and differential promoter usage revealed a complex pattern of transcriptional and post-transcriptional gene regulation upon infection with LPS. In addition, gene ontology, molecular networks and pathway analyses identified the top significantly regulated functional classification, canonical pathways and network functions at each activation status. Moreover, we further analyzed differentially expressed genes to identify transcription factor (TF) motifs (−950 to +50 bp of the 5’ upstream promoters) and epigenetic mechanisms. Furthermore, we confirmed that the expressions of key inflammatory genes as well as pro-inflammatory mediators in the supernatants were significantly induced in LPS treated primary microglial cells. This transcriptomic analysis is the first to show a comparison of the family-wide differential expression of most known immune genes and also reveal transcription evidence of multiple gene families in BV-2 microglial cells. Collectively, these findings reveal unique transcriptomic signatures in BV-2 microglial cells required for homeostasis and effective immune responses.


Biochip Journal | 2012

Comparative study between Next Generation Sequencing Technique and identification of microarray for Species Identification within blended food products

Jung Youn Park; Seung Yong Lee; Cheul Min An; Jung-Ha Kang; Jihoon Kim; Jin Choul Chai; Jiayu Chen; Jin Seok Kang; Jeong Jin Ahn; Young Seek Lee; Seung Yong Hwang

Recently people are increasingly health conscious and interested in their well-being. Dietary issues are also a hot topic of research, as an ever-growing industry aims to marked specific health benefits of foods. The attention of many people is also focused on the elemental composition of food, and many research groups focus on element analysis of food and fast identification of the chemical species of food elements. Also, many researchers are resolving questions of food elemental composition by the analysis of biological resource information. Many groups use DNA sequencing methods, because DNA analysis provides a complete picture of the genetic information. DNA sequencing methods are quickly changing due to the development of new biotechnology. Lately Next Generation Sequencing (NGS) techniques have been developed. NGS techniques have several advantages, such as increased productivity, as well as less time and cost. NGS technologies have resulted in new sequencing methods as well as the creation of a new foundation of genome research. Our research is based on species identification within fish cake using NGS and microarray. Finally we performed a comparative study between NGS and microarray by data analysis. We identified 39 fish species within fish cake samples, we are able to accurate analysis by sequence data. NGS techniques are used in many applications, including genomics and epigenomics. NGS techniques are widely used for gene analysis and early diagnosis of disease within medical R&D and bio-medical areas. Our research is widely applicable to the study of various biological materials, and may be applicable to the lowcost analysis of human genes. Our research can be applied to several areas of new research using multifaceted analysis.


Journal of Applied Toxicology | 2014

Chronic ethanol exposure increases goosecoid (GSC) expression in human embryonic carcinoma cell differentiation.

Debasish Halder; Ji Hyun Park; Mi Ran Choi; Jin Choul Chai; Young Seek Lee; Chanchal Mandal; Kyoung Hwa Jung; Young Gyu Chai

Fetal alcohol spectrum disorder (FASD) is a set of developmental malformations caused by excess alcohol consumption during pregnancy. Using an in vitro system, we examined the role that chronic ethanol (EtOH) exposure plays in gene expression changes during the early stage of embryonic differentiation. We demonstrated that EtOH affected the cell morphology, cell cycle progression and also delayed the down‐regulation of OCT4 and NANOG during differentiation. Gene expression profiling and pathway analysis demonstrated that EtOH deregulates many genes and pathways that are involved in early embryogenesis. Follow‐up analyzes revealed that EtOH exposure to embryoid bodies (EBs) induced the expression of an organizer‐specific gene, goosecoid (GSC), in comparison to controls. Moreover, EtOH treatment altered several important genes that are involved in embryonic structure formation, nervous system development, and placental and embryonic vascularization, which are all common processes that FASD can disrupt. Specifically, EtOH treatment let to a reduction in ALDOC, ENO2 and CDH1 expression, whereas EtOH treatment induced the expression of PTCH1, EGLN1, VEGFA and DEC2 in treated EBs. We also found that folic acid (FA) treatment was able to correct the expression of the majority of genes deregulated by EtOH exposure during early embryo development. Finally, the present study identified a gene set including GSC, which was deregulated by EtOH exposure that may contribute to the etiology of fetal alcohol syndrome (FAS). We also reported that EtOH‐induced GSC expression is mediated by Nodal signaling, which may provide a new avenue for analyzing the molecular mechanisms behind EtOH teratogenicity in FASD individuals. Copyright


PLOS ONE | 2015

Transcriptomic Profiling and H3K27me3 Distribution Reveal Both Demethylase-Dependent and Independent Regulation of Developmental Gene Transcription in Cell Differentiation

Sung Chul Kang; Se Kye Kim; Jin Choul Chai; Sun Hwa Kim; Kyoung-Jae Won; Young Seek Lee; Kyoung Hwa Jung; Young Gyu Chai

The removal of histone H3 trimethylation at lysine residue 27 (H3K27me3) plays a critical role in the transcriptional initiation of developmental genes. The H3K27me3-specific KDM6 demethylases JMJD3 and UTX are responsible for the transcriptional initiation of various developmental genes, but some genes are expressed in a KDM6 demethylase-independent manner. To address the role of H3K27me3 in the retinoic acid (RA)-induced differentiation of the human carcinoma NCCIT cell line, we inhibited JMJD3 and UTX using the H3K27me3 demethylase inhibitor GSK-J4. The commitment of JMJD3/UTX-inhibited cells to a specific fate was delayed, and transcriptome profiling also revealed the differential expression of genes related to cell fate specification in demethylase-inactivated cells; the expression levels of RA metabolism and HOX family genes significantly decreased. We observed a weak correlation between H3K27me3 enrichment and transcriptional repression in the control and JMJD/UTX-inhibited cells, except for a few sets of developmental genes that are indispensable for cell fate specification. Taken together, these results provide the H3K27me3 landscape of a differentiating cell line and suggest that both demethylase-dependent and demethylase-independent transcriptional regulation play a role in early differentiation and developmental gene expression activated by H3K27me3 demethylation.


Experimental Cell Research | 2014

JMJD2A attenuation affects cell cycle and tumourigenic inflammatory gene regulation in lipopolysaccharide stimulated neuroectodermal stem cells.

Amitabh Das; Jin Choul Chai; Kyoung Hwa Jung; Nando Dulal Das; Sung Chul Kang; Young Seek Lee; Hyemyung Seo; Young Gyu Chai

JMJD2A is a lysine trimethyl-specific histone demethylase that is highly expressed in a variety of tumours. The role of JMJD2A in tumour progression remains unclear. The objectives of this study were to identify JMJD2A-regulated genes and understand the function of JMJD2A in p53-null neuroectodermal stem cells (p53(-/-) NE-4Cs). We determined the effect of LPS as a model of inflammation in p53(-/-) NE-4Cs and investigated whether the epigenetic modifier JMJD2A alter the expression of tumourigenic inflammatory genes. Global gene expression was measured in JMJD2A knockdown (kd) p53(-/-) NE-4Cs and in LPS-stimulated JMJD2A-kd p53(-/-) NE-4C cells. JMJD2A attenuation significantly down-regulated genes were Cdca2, Ccnd2, Ccnd1, Crebbp, IL6rα, and Stat3 related with cell cycle, proliferation, and inflammatory-disease responses. Importantly, some tumour-suppressor genes including Dapk3, Timp2 and TFPI were significantly up-regulated but were not affected by silencing of the JMJD2B. Furthermore, we confirmed the attenuation of JMJD2A also down-regulated Cdca2, Ccnd2, Crebbp, and Rest in primary NSCs isolated from the forebrains of E15 embryos of C57/BL6J mice with effective p53 inhibitor pifithrin-α (PFT-α). Transcription factor (TF) motif analysis revealed known binding patterns for CDC5, MYC, and CREB, as well as three novel motifs in JMJD2A-regulated genes. IPA established molecular networks. The molecular network signatures and functional gene-expression profiling data from this study warrants further investigation as an effective therapeutic target, and studies to elucidate the molecular mechanism of JMJD2A-kd-dependent effects in neuroectodermal stem cells should be performed.


Journal of Veterinary Science | 2012

Genetic populations of Bacillus anthracis isolates from Korea

Kyoung Hwa Jung; Sang Hoon Kim; Se Kye Kim; Soo Young Cho; Jin Choul Chai; Young Seek Lee; Ji Cheon Kim; Seoung Joo Kim; Hee Bok Oh; Young Gyu Chai

Bacillus (B.) anthracis is the pathogen that causes fatal anthrax. Strain-specific detection of this bacterium using molecular approaches has enhanced our knowledge of microbial population genetics. In the present study, we employed molecular approaches including multiple-locus variable-number tandem repeat analysis (MLVA) and canonical single-nucleotide polymorphism (canSNP) analysis to perform molecular typing of B. anthracis strains isolated in Korea. According to the MLVA, 17 B. anthracis isolates were classified into A3a, A3b, and B1 clusters. The canSNP analyses subdivided the B. anthracis isolates into two of the three previously recognized major lineages (A and B). B. anthracis isolates from Korea were found to belong to four canSNP sub-groups (B.Br.001/2, A.Br.005/006, A.Br.001/002, and A.Br.Ames). The A.Br.001/002 and A.Br.Ames sub-lineages are closely related genotypes frequently found in central Asia and most isolates were. On the other hand, B. anthracis CH isolates were analyzed that belonged to the B.Br.001/002 sub-group which found in southern Africa, Europe and California (USA). B.Br.001/002 genotype is new lineage of B. anthracis in Korea that was not found before. This discovery will be helpful for the creation of marker systems and might be the result of human activity through the development of agriculture and increased international trade in Korea.


Scientific Reports | 2017

RNA sequencing reveals resistance of TLR4 ligand-activated microglial cells to inflammation mediated by the selective jumonji H3K27 demethylase inhibitor

Amitabh Das; Sarder Arifuzzaman; Taeho Yoon; Sun Hwa Kim; Jin Choul Chai; Young Seek Lee; Kyoung Hwa Jung; Young Gyu Chai

Persistent microglial activation is associated with the production and secretion of various pro-inflammatory genes, cytokines and chemokines, which may initiate or amplify neurodegenerative diseases. A novel synthetic histone 3 lysine 27 (H3K27) demethylase JMJD3 inhibitor, GSK-J4, was proven to exert immunosuppressive activities in macrophages. However, a genome-wide search for GSK-J4 molecular targets has not been undertaken in microglia. To study the immuno-modulatory effects of GSK-J4 at the transcriptomic level, triplicate RNA sequencing and quantitative real-time PCR analyses were performed with resting, GSK-J4-, LPS- and LPS + GSK-J4-challenged primary microglial (PM) and BV-2 microglial cells. Among the annotated genes, the transcriptional sequencing of microglia that were treated with GSK-J4 revealed a selective effect on LPS-induced gene expression, in which the induction of cytokines/chemokines, interferon-stimulated genes, and prominent transcription factors TFs, as well as previously unidentified genes that are important in inflammation was suppressed. Furthermore, we showed that GSK-J4 controls are important inflammatory gene targets by modulating STAT1, IRF7, and H3K27me3 levels at their promoter sites. These unprecedented results demonstrate that the histone demethylase inhibitor GSK-J4 could have therapeutic applications for neuroinflammatory diseases.


Human & Experimental Toxicology | 2015

PCDHB14- and GABRB1-like nervous system developmental genes are altered during early neuronal differentiation of NCCIT cells treated with ethanol

Debasish Halder; Chanchal Mandal; Bh Lee; Js Lee; Choi; Jin Choul Chai; Young Seek Lee; Kyoung Hwa Jung; Young Gyu Chai

Ethanol (EtOH) exposure during embryonic development causes dysfunction of the central nervous system (CNS). Here, we examined the effects of chronic EtOH on gene expression during early stages of neuronal differentiation. Human embryonic carcinoma (NCCIT) cells were differentiated into neuronal precursors/lineages in the presence or absence of EtOH and folic acid. Gene expression profiling and pathway analysis demonstrated that EtOH deregulates many genes and pathways that are involved in early brain development. EtOH exposure downregulated several important genes, such as PCDHB14, GABRB1, CTNND2, NAV3, RALDH1, and OPN5, which are involved in CNS development, synapse assembly, synaptic transmission, and neurotransmitter receptor activity. GeneGo pathway analysis revealed that the deregulated genes mapped to disease pathways that were relevant to fetal alcohol spectrum disorders (FASD, such as neurotic disorders, epilepsy, and alcohol-related disorders). In conclusion, these findings suggest that the impairment of the neurological system or suboptimal synapse formation resulting from EtOH exposure could underlie the neurodevelopmental disorders in individuals with FASD.


Scientific Reports | 2016

Transcriptome sequencing wide functional analysis of human mesenchymal stem cells in response to TLR4 ligand.

Sun Hwa Kim; Amitabh Das; Jin Choul Chai; Bert Binas; Mi Ran Choi; Kyoung Sun Park; Young Seek Lee; Kyoung Hwa Jung; Young Gyu Chai

Due to their multipotentiality and immunomodulation, human mesenchymal stem cells (hMSCs) are widely studied for the treatment of degenerative and inflammatory diseases. Transplantation of hMSCs to damaged tissue is a promising approach for tissue regeneration. However, the physiological mechanisms and regulatory processes of MSC trafficking to injured tissue are largely unexplored. Here, we evaluated the gene expression profile and migratory potential of hMSCs upon stimulation with the TLR4 ligand lipopolysaccharide (LPS). Using RNA sequencing, we identified unique induction patterns of interferon stimulated genes, cytokines and chemokines involved in chemotaxis and homing. The −950 to +50 bp regions of many of these LPS-responsive genes were enriched with putative binding motifs for the transcription factors (TFs) interferon regulatory factor (IRF1) and nuclear factor kappa B (NF-κB1, REL), which were also induced by LPS along with other TFs. Chromatin immunoprecipitation assays showed that IRF1 bound within their target genes promoter region. In addition, IRF1 attenuation significantly down-regulated interferon stimulated genes as well as key cytokines. Furthermore, using pharmacological inhibitors, we showed that the NF-κB and phosphatidylinositol 3-kinase (PI3K) pathways regulate the migratory and cytokines/chemokines response to LPS. These unprecedented data suggest that IRF1 and NF-κB orchestrate the TLR4-primed immunomodulatory response of hMSCs and that this response also involves the PI3K pathway.

Collaboration


Dive into the Jin Choul Chai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge