Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jin Chung is active.

Publication


Featured researches published by Jin Chung.


Biogerontology | 2007

Down-regulation of iNOS and TNF-α expression by kaempferol via NF-κB inactivation in aged rat gingival tissues

Hyung Keun Kim; Hae Ryoun Park; Jun Sik Lee; Tae Sung Chung; Hae Young Chung; Jin Chung

The primary objective of this study was to evaluate the ability and mechanism of action of kaempferol, which is contained in extracts from Nelumbo nucifera, a well-known Oriental herb used in traditional medicine, with regard to the inhibition of iNOS and TNF-α expression in aged rat gingival tissues. We conducted an investigation into the age-related effects of kaempferol on reactive oxygen species (ROS) and GSH oxidative status in samples of aged gingival tissues. Western blotting was conducted in order to determine the expression of iNOS, TNF-α, p38 MAPK, NIK/IKK, p65 and IκBα in the sample tissues. Electrophoretic mobility shift assays (EMSA) were conducted in an effort to characterize the binding activities of NF-κB transcription factors in the aged rat gingival nuclear extracts. Our results indicate that kaempferol reduced ROS levels and augmented GSH levels in a dose-dependent manner in the aged gingival tissues. Kaempferol was shown to effect a significant reduction in iNOS and TNF-α protein levels, as compared to control gingival tissue samples. The results of Western blot analysis revealed that kaempferol treatment effected the reduction of iNOS and TNF-α expression, decreased nuclear p65 and increased cytosolic p65, down-regulation of Erk, p38, JNK and NIK/IKK expression. The EMSA results also indicated that kaempferol, when administered to the rat tissues, attenuated the NF-κB nuclear binding activity. Kaempferol may inhibit ROS generation via the inhibition of iNOS and TNF-α expression in aged gingival tissues, via the modulation of the NF-κB and mitogen-activated protein kinase (MAPK) pathways.


Clinical and Vaccine Immunology | 2005

Xylitol Inhibits Inflammatory Cytokine Expression Induced by Lipopolysaccharide from Porphyromonas gingivalis

Su-Ji Han; So-Yeon Jeong; Yun-Ju Nam; Kyu-Ho Yang; Hoi-Soon Lim; Jin Chung

ABSTRACT Porphyromonas gingivalis is one of the suspected periodontopathic bacteria. The lipopolysaccharide (LPS) of P. gingivalis is a key factor in the development of periodontitis. Inflammatory cytokines play important roles in the gingival tissue destruction that is a characteristic of periodontitis. Macrophages are prominent at chronic inflammatory sites and are considered to contribute to the pathogenesis of periodontitis. Xylitol stands out and is widely believed to possess anticaries properties. However, to date, little is known about the effect of xylitol on periodontitis. The aim of the present study was to determine tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β) expression when RAW 264.7 cells were stimulated with P. gingivalis LPS (hereafter, LPS refers to P. gingivalis LPS unless stated otherwise) and the effect of xylitol on the LPS-induced TNF-α and IL-1β expression. The kinetics of TNF-α and IL-1β levels in culture supernatant after LPS treatment showed peak values at 1 h (TNF-α) and 2 to 4 h (IL-1β), respectively. NF-κB, a transcription factor, was also activated by LPS treatment. These cytokine expressions and NF-κB activation were suppressed by pretreatment with pyrrolidine dithiocarbamate (an inhibitor of NF-κB). Pretreatment with xylitol inhibited LPS-induced TNF-α and IL-1β gene expression and protein synthesis. LPS-induced mobilization of NF-κB was also inhibited by pretreatment with xylitol in a dose-dependent manner. Xylitol also showed inhibitory effect on the growth of P. gingivalis. Taken together, these findings suggest that xylitol may have good clinical effect not only for caries but also for periodontitis by its inhibitory effect on the LPS-induced inflammatory cytokine expression.


Biotechnology Letters | 2006

Induction of RANTES and CCR5 through NF-κB activation via MAPK pathway in aged rat gingival tissues

Hyung Keun Kim; Hae Ryoun Park; Kyoung Hee Sul; Hae Young Chung; Jin Chung

Chemokine and chemokine receptor expression in gingival tissues plays a central role in periodontal disease during aging. In the present study, we explored the modulation of chemokines and chemokine receptors expression in aging rat gingival tissues. In the 24-month-old (Old) rat gingival tissues, RANTES and CCR5 mRNA and protein levels were 2–4 fold increased over those of the 6-month-old (Young) rats. The Old rats had considerable enhancement of all three of the studied MAPK activities: extracellular signal regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK. These results suggest that age-related increases in RANTES and CCR5 expression are associated with increased IκBα, nuclear NF-κB, and MAPK activity in gingival tissues.


Journal of Periodontology | 2014

Xylitol, an Anticaries Agent, Exhibits Potent Inhibition of Inflammatory Responses in Human THP-1-Derived Macrophages Infected With Porphyromonas gingivalis

Eunjoo Park; Hee Sam Na; Sheon Min Kim; Shannon M. Wallet; Seunghee Cha; Jin Chung

BACKGROUND Xylitol is a well-known anticaries agent and has been used for the prevention and treatment of dental caries. In this study, the anti-inflammatory effects of xylitol are evaluated for possible use in the prevention and treatment of periodontal infections. METHODS Cytokine expression was stimulated in THP-1 (human monocyte cell line)-derived macrophages by live Porphyromonas gingivalis, and enzyme-linked immunosorbent assay and a commercial multiplex assay kit were used to determine the effects of xylitol on live P. gingivalis-induced production of cytokine. The effects of xylitol on phagocytosis and the production of nitric oxide were determined using phagocytosis assay, viable cell count, and Griess reagent. The effects of xylitol on P. gingivalis adhesion were determined by immunostaining, and costimulatory molecule expression was examined by flow cytometry. RESULTS Live P. gingivalis infection increased the production of representative proinflammatory cytokines, such as tumor necrosis factor-α and interleukin (IL)-1β, in a multiplicity of infection- and time-dependent manner. Live P. gingivalis also enhanced the release of cytokines and chemokines, such as IL-12 p40, eotaxin, interferon γ-induced protein 10, monocyte chemotactic protein-1, and macrophage inflammatory protein-1. The pretreatment of xylitol significantly inhibited the P. gingivalis-induced cytokines production and nitric oxide production. In addition, xylitol inhibited the attachment of live P. gingivalis on THP-1-derived macrophages. Furthermore, xylitol exerted antiphagocytic activity against both Escherichia coli and P. gingivalis. CONCLUSION These findings suggest that xylitol acts as an anti-inflammatory agent in THP-1-derived macrophages infected with live P. gingivalis, which supports its use in periodontitis.


Molecules and Cells | 2009

Chemokines gene expression of RAW 264.7 cells by Actinobacillus actinomycetemcomitans lipopolysaccharide using microarray and RT-PCR analysis

Jin Chung; Mun Jeoung Choi; So Yeon Jeong; Jong Suk Oh; Hyung Keun Kim

Actinobacillus actinoinycetemcomitans (A. actinomycetem-comitans) is an important pathogen casuing aggressive periodontitis. The present study was designed to investigate the chemokines expression regulated by A. actinomycetemcomitans lipopolysaccharide (LPS). Chemokines genes expression profiling was performed in Raw 264.7 cells by analyses of microarray and reverse transcription-polymerase chain reaction (RT-PCR). Microarray results showed that the induction of monocyte chemoattractant protein-1α (MCP-1α) and macrophage inflammatory protein-1α (MIP-1α), MIP-1β, MIP-1γ, regulated upon activation, normal T-cell expressed and secreted (RANTES), macrophage inflammatory protein-2 (MIP-2), and interferon-γ inducible protein 10 (IP 10) by A. actinomycetemcomitans LPS was increased to 12.5, 1.53, 9.09, 17.3, 2.82, 16.1, and 18.1 folds at 18 h, respectively. To check these chemokines expression by A. actinomycetemcomitans LPS, we examined gene expressions by RT-PCR, and found that the expression of MIP-1β, MIP-1γ, RANTES, MIP-2, and IP 10 was increased 107.1, 93.6, 106.8, 86.5, and 162.0 folds at 18 h, respectively. These results indicate that A. actinomycetemcomitans LPS stimulates the several chemokines expressions (MIP-1α, MIP-1β, MIP-1γ, RANTES, MIP-2, and IP 10) in Raw 264.7 cells.


Journal of Periodontology | 2016

Aggregatibacter actinomycetemcomitans-Induced AIM2 Inflammasome Activation Is Suppressed by Xylitol in Differentiated THP-1 Macrophages.

Se-Yeon Kim; Mi Hee Park; Yu Ri Song; Hee Sam Na; Jin Chung

BACKGROUND Aggressive periodontitis is characterized by rapid destruction of periodontal tissue caused by Aggregatibacter actinomycetemcomitans. Interleukin (IL)-1β is a proinflammatory cytokine, and its production is tightly regulated by inflammasome activation. Xylitol, an anticaries agent, is anti-inflammatory, but its effect on inflammasome activation has not been researched. This study investigates the effect of xylitol on inflammasome activation induced by A. actinomycetemcomitans. METHODS The differentiated THP-1 macrophages were stimulated by A. actinomycetemcomitans with or without xylitol and the expressions of IL-1β and inflammasome components were detected by real time PCR, ELISA, confocal microscopy and Immunoblot analysis. The effects of xylitol on the adhesion and invasion of A. actinomycetemcomitans to cells were measured by viable cell count. RESULTS A. actinomycetemcomitans increased pro IL-1β synthesis and IL-1β secretion in a multiplicity of infection- and time-dependent manner. A. actinomycetemcomitans also stimulated caspase-1 activation. Among inflammasome components, apoptosis-associated speck-like protein containing a CARD (ASC) and absent in melanoma 2 (AIM2) proteins were upregulated by A. actinomycetemcomitans infection. When cells were pretreated with xylitol, proIL-1β and IL-1β production by A. actinomycetemcomitans infection was significantly decreased. Xylitol also inhibited ASC and AIM2 proteins and formation of ASC puncta. Furthermore, xylitol suppressed internalization of A. actinomycetemcomitans into differentiated THP-1 macrophages without affecting viability of A. actinomycetemcomitans within cells. CONCLUSIONS A. actinomycetemcomitans induced IL-1β production and AIM2 inflammasome activation. Xylitol inhibited these effects, possibly by suppressing internalization of A. actinomycetemcomitans into cells. Thus, this study proposes a mechanism for IL-1β production via inflammasome activation and discusses a possible use for xylitol in periodontal inflammation caused by A. actinomycetemcomitans.


SpringerPlus | 2016

Porphyromonas gingivalis-induced miR-132 regulates TNFα expression in THP-1 derived macrophages

Mi Hee Park; Eunjoo Park; H.G. Kim; Hee Sam Na; Jin Chung

BackgroundPeriodontitis is a chronic inflammatory disease induced by periodontopathogens such as Porphyromonas gingivalis (P. gingivalis). MicroRNAs (miRNAs) are small single-stranded noncoding RNAs that regulate gene expression at the level of translation. MiRNAs have been reported to be involved in inflammatory processes. In this study, we examined the effects of P. gingivalis-induced inflammatory miRNAs expression on TNFα production in THP-1 derived macrophages.ResultsPorphyromonas gingivalis induced the expression of miR-132. P. gingivalis-induced miR-132 expression was significantly inhibited by TLR2/4 knock-down and NF-κB inhibitor. Additionally, miR-132 antagomir strongly repressed production of TNFα. The expression of NFE2L2 and NFAT5, the putative target genes of miR-132 involved in regulation of TNFα, decreased in response to P. gingivalis. Furthermore, miR-132 antagomir rescued P. gingivalis-induced suppression of NFE2L2 and NFAT5.ConclusionsThese results suggest that the induction of miR-132 by P. gingivalis can modulate the pathogenesis of periodontitis induced via regulatory expression of TNFα.


Biotechnology Letters | 2015

Xylitol induces cell death in lung cancer A549 cells by autophagy

Eunjoo Park; Mi Hee Park; Hee Sam Na; Jin Chung

Xylitol is a widely used anti-caries agent that has anti-inflammatory effects. We have evaluated the potential of xylitol in cancer treatment. It’s effects on cell proliferation and cytotoxicity were measured by MTT assay and LDH assay. Cell morphology and autophagy were examined by immunostaining and immunoblotting. Xylitol inhibited cell proliferation in a dose-dependent manner in these cancer cells: A549, Caki, NCI-H23, HCT-15, HL-60, K562, and SK MEL-2. The IC50 of xylitol in human gingival fibroblast cells was higher than in cancer cells, indicating that it is more specific for cancer cells. Moreover, xylitol induced autophagy in A549 cells that was inhibited by 3-methyladenine, an autophagy inhibitor. These results indicate that xylitol has potential in therapy against lung cancer by inhibiting cell proliferation and inducing autophagy of A549 cells.


Journal of Periodontology | 2017

Peptide 19 of Porphyromonas gingivalis Heat Shock Protein Is a Potent Inducer of Low-Density Lipoprotein Oxidation

Ji-Young Joo; Gil Sun Cha; Jin Chung; Ju-Youn Lee; Sung-Jo Kim; Jeom-Il Choi

BACKGROUND Although periodontal pathogens show a strong association with development of atherosclerosis, little is known about how a microorganism contributes to disease onset and progression. Oxidation of low-density lipoprotein (LDL) is a major risk factor of atherogenesis. The principal objective of this study is to evaluate the ability of peptide 19 (Pep19) of Porphyromonas gingivalis (Pg) heat shock protein (HSP) as a potent inducer of LDL oxidation, and a secondary objective is to compare this ability with that of Pep19 from different bacteria. METHODS HSP60, Pep14, and Pep19 from Pg and THP-1 monocytes were cultured, and the extent of LDL oxidation induced by each peptide was evaluated by an assay for thiobarbituric acid-reactive substances (TBARS). Pep19 and HSP60 from Chlamydia pneumoniae and Mycobacterium tuberculosis were also cultured with THP-1 monocytes and evaluated by the TBARS assay. After incubation of macrophages with LDL and peptides from Pg, Oil Red O staining was performed for examination of foam cells, macrophages that took up the oxidized LDL. RESULTS Monocyte-mediated native-LDL oxidation under the influence of Pep19 or HSP60 from Pg was significantly stronger than oxidation induced by the counterpart Pep19 or HSP60 from C. pneumoniae or M. tuberculosis. Pep19 from Pg HSP60 showed a stronger ability to induce LDL oxidation than did Pep14 from Pg HSP60. CONCLUSION These results suggest Pep19 from Pg HSP60 has a distinct ability to induce native-LDL oxidation as a plausible mechanism by which this peptide may drive epitope spreading to the neoantigen, i.e., oxidized LDL, in the pathogenesis of atherosclerosis.


Journal of Periodontology | 2016

Elevated MicroRNA-128 in Periodontitis Mitigates Tumor Necrosis Factor-α Response via p38 Signaling Pathway in Macrophages.

Hee Sam Na; Mi Hee Park; Yu Ri Song; Se-Yeon Kim; H.G. Kim; Ju-Youn Lee; Jeom-Il Choi; Jin Chung

BACKGROUND Periodontitis is a chronic inflammatory disease resulting from an inflammatory response to subgingival plaque bacteria, including Porphyromonas gingivalis. MicroRNA (miRNA) is a current focus in regulating the inflammatory processes. In this study, the inflammatory miRNA expression in gingival tissues of patients with periodontitis and of healthy individuals is compared, and its role in regulating the inflammatory response is examined. METHODS Gingival tissues from patients with periodontitis and healthy individuals were collected for miRNA microarray. THP-1 and CA9-22 cells were challenged with P. gingivalis, and miRNA expression was determined by real-time polymerase chain reaction. Target genes for miRNA were predicted using TargetScanHuman database, and miRNA gene expressions were reviewed using public databases. For the functional study, THP-1 cells were transfected with a miRNA-128 mimic, and target gene expression was compared with THP-1 cells challenged with P. gingivalis. For the tolerance test, THP-1 cells transfected with miRNA-128 mimic were treated with phorbol 12-myristate 13-acetate (PMA) or paraformaldehyde (PFA)-fixed Escherichia coli. Tumor necrosis factor (TNF)-α production was determined by enzyme-linked immunosorbent assay, and mitogen-activated protein kinase (MAPK) protein phosphorylation was determined by Western blot. RESULTS Gingival tissues from patients with periodontitis showed increased expression of miRNA-128, miRNA-34a, and miRNA-381 and decreased expression of miRNA-15b, miRNA-211, miRNA-372, and miRNA-656. THP-1 cells and CA9-22 cells challenged with P. gingivalis showed increased miRNA-128 expression. Among the predicted miRNA-128 target genes, several genes that are involved in MAPK signaling pathway showed similar gene expression pattern between P. gingivalis challenge and miRNA-128 mimic transfection. In THP-1 cells transfected with miRNA-128 mimic, TNF-α production was lower, and phosphorylation of p38 was inhibited when challenged with PMA or PFA-fixed E. coli. CONCLUSION miRNA-128 may be involved in mitigating the inflammatory response induced by P. gingivalis in periodontitis.

Collaboration


Dive into the Jin Chung's collaboration.

Top Co-Authors

Avatar

Hee Sam Na

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Se-Yeon Kim

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Mi Hee Park

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Jong-Suk Oh

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Kyu-Ho Yang

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Hyung Keun Kim

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Yu Ri Song

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Hae Young Chung

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

YuRi Song

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Eunjoo Park

Pusan National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge