Jin Fu
Xiamen University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jin Fu.
PLOS ONE | 2012
Yuhang Li; Longhe Yang; Ling Chen; Chenggang Zhu; Rui Huang; Xiao Zheng; Yan Qiu; Jin Fu
N-acylethanolamine-hydrolyzing acid amidase (NAAA) is a lysosomal enzyme involved in biological deactivation of N-palmitoylethanolamide (PEA), which exerts anti-inflammatory and analgesic effects through the activation of nuclear receptor peroxisome proliferator-activated receptor-alpha (PPAR-α). To develop selective and potent NAAA inhibitors, we designed and synthesized a series of derivatives of 1-pentadecanyl-carbonyl pyrrolidine (compound 1), a general amidase inhibitor. Structure activity relationship (SAR) studies have identified a compound 16, 1-(2-Biphenyl-4-yl)ethyl-carbonyl pyrrolidine, which has shown the highest inhibition on NAAA activity (IC50 = 2.12±0.41 µM) and is characterized as a reversible and competitive NAAA inhibitor. Computational docking analysis and mutagenesis study revealed that compound 16 interacted with Asparagine 209 (Asn209) residue flanking the catalytic pocket of NAAA so as to block the substrate entrance. In vitro pharmacological studies demonstrated that compound 16 dose-dependently reduced mRNA expression levels of iNOS and IL-6, along with an increase of intracellular PEA levels, in mouse macrophages with lipopolysaccharides (LPS) induced inflammation. Our study discovered a novel NAAA inhibitor, compound 16, that could serve as a potential anti-inflammatory agent.
PLOS ONE | 2014
Angran Fan; Xiaofeng Wu; Huijuan Wu; Long Li; Rui Huang; Yue-Yong Zhu; Yan Qiu; Jin Fu; Jie Ren; Chenggang Zhu
Dietary fat-derived lipid oleoylethanolamide (OEA) has shown to modulate lipid metabolism through a peroxisome proliferator-activated receptor-alpha (PPAR-α)-mediated mechanism. In our study, we further demonstrated that OEA, as an atheroprotective agent, modulated the atherosclerotic plaques development. In vitro studies showed that OEA antagonized oxidized LDL (ox-LDL)-induced vascular endothelial cell proliferation and vascular smooth muscle cell migration, and suppressed lipopolysaccharide (LPS)-induced LDL modification and inflammation. In vivo studies, atherosclerosis animals were established using balloon-aortic denudation (BAD) rats and ApoE-/- mice fed with high-caloric diet (HCD) for 17 or 14 weeks respectively, and atherosclerotic plaques were evaluated by oil red staining. The administration of OEA (5 mg/kg/day, intraperitoneal injection, i.p.) prevented or attenuated the formation of atherosclerotic plaques in HCD-BAD rats or HCD-ApoE−/− mice. Gene expression analysis of vessel tissues from these animals showed that OEA induced the mRNA expressions of PPAR-α and downregulated the expression of M-CFS, an atherosclerotic marker, and genes involved in oxidation and inflammation, including iNOS, COX-2, TNF-α and IL-6. Collectively, our results suggested that OEA exerted a pharmacological effect on modulating atherosclerotic plaque formation through the inhibition of LDL modification in vascular system and therefore be a potential candidate for anti-atherosclerosis drug.
Journal of Neurochemistry | 2012
Xiyue Wu; Lijun Han; Xiaolin Zhang; Long Li; Changzhen Jiang; Yan Qiu; Rui Huang; Baoying Xie; Zhixiong Lin; Jie Ren; Jin Fu
J. Neurochem. (2012) 120, 842–849.
International Journal of Molecular Sciences | 2014
Longhe Yang; Yanting Li; Jie Ren; Chenggang Zhu; Jin Fu; Donghai Lin; Yan Qiu
Celastrol, a major active ingredient of Chinese herb Tripterygium wilfordii Hook. f. (thunder god vine), has exhibited a broad spectrum of pharmacological activities, including anti-inflammation, anti-cancer and immunosuppression. In the present study, we used animal models of inflammatory pain and neuropathic pain, generated by carrageenan injection and spared nerve injury (SNI), respectively, to evaluate the effect of celastrol and to address the mechanisms underlying pain processing. Intraperitoneal (i.p.) injection of celastrol produced a dose-dependent inhibition of carrageenan-induced edema and allodynia. Real-time PCR analysis showed that celastrol (0.3 mg/kg, i.p.) significantly reduced mRNA expressions of inflammatory cytokines, TNF-α, IL-6, IL-1β, in carrageenan-injected mice. In SNI mice, pain behavior studies showed that celastrol (1 mg/kg, i.p.) effectively prevented the hypersensitivity of mechanical nociceptive response on the third day post-surgery and the seventh day post-surgery. Furthermore, the anti-hyperalgesic effects of celastrol in carrageenan-injected mice and SNI mice were reversed by SR144528 (1 mg/kg, i.p.), a specific cannabinoid receptor-2 (CB2) receptor antagonist, but not by SR141716 (1 mg/kg, i.p.), a specific cannabinoid receptor-1 (CB1) receptor antagonist. Taken together, our results demonstrate the analgesia effects of celastrol through CB2 signaling and propose the potential of exploiting celastrol as a novel candidate for pain relief.
Scientific Reports | 2016
Ling Chen; Jie Ren; Longhe Yang; Yanting Li; Jin Fu; Yuhang Li; Yifeng Tian; Funan Qiu; Zuguo Liu; Yan Qiu
Inhibition of stearoyl-CoA desaturase 1 (SCD1) has been found to effectively suppress tumor cell proliferation and induce apoptosis in numerous neoplastic lesions. However, mechanism underlying SCD1-mediated anti-tumor effect has maintained unclear. Herein, we reported endo-lipid messenger ceramides played a critical role in tumor fate modulated by SCD1 inhibition. In vitro study in colorectal cancer cells demonstrated inhibition of SCD1 activity promoted apoptosis attributed to mitochondria dysfunctions, upregulation of reaction oxygen species (ROS), alteration of mitochondrial transmembrane potential and translocation of mitochondrial protein cytochrome C. While these effects were mediated by intracellular ceramide signals through induction of ceramide biosynthesis, rather than exclusive SFA accumulation. In vivo study in xenograft colorectal cancer mice showed pharmacologic administration of SCD1 inhibitor A939 significantly delayed tumor growth, which was reversed by L-cycloserine, an inhibitor of ceramide biosynthesis. These results depicted the cross-talk of SCD1-mediated lipid pathway and endo-ceramide biosynthesis pathway, indicating roles of ceramide signals in SCD1-mediated anti-tumor property.
Journal of Pharmacological Sciences | 2015
Long Li; Lei Li; Ling Chen; Xiaoyu Lin; Yaping Xu; Jie Ren; Jin Fu; Yan Qiu
Chromatographia | 2014
Ling Chen; Baoying Xie; Lei Li; Weizhong Jiang; Yang Zhang; Jin Fu; Guoxian Guan; Yan Qiu
Archive | 2012
Jin Fu; Longhe Yang; Yan Qiu; Ling Chen; Chenggang Zhu; Jie Ren; Zuguo Liu; Rui Huang
Archive | 2012
Jin Fu; Yuhang Li; Chenggang Zhu; Jie Ren; Yan Qiu; Rui Huang
Archive | 2012
Jin Fu; Chenggang Zhu; Jie Ren; Yan Qiu