Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jin-Hong Jiang is active.

Publication


Featured researches published by Jin-Hong Jiang.


Langmuir | 2011

Surface Characteristics of a Self-Polymerized Dopamine Coating Deposited on Hydrophobic Polymer Films

Jin-Hong Jiang; Liping Zhu; Lijing Zhu; Bao-Ku Zhu; You-Yi Xu

This study aims to explore the fundamental surface characteristics of polydopamine (pDA)-coated hydrophobic polymer films. A poly(vinylidene fluoride) (PVDF) film was surface modified by dip coating in an aqueous solution of dopamine on the basis of its self-polymerization and strong adhesion feature. The self-polymerization and deposition rates of dopamine on film surfaces increased with increasing temperature as evaluated by both spectroscopic ellipsometry and scanning electronic microscopy (SEM). Changes in the surface morphologies of pDA-coated films as well as the size and shape of pDA particles in the solution were also investigated by SEM, atomic force microscopy (AFM), and transmission electron microscopy (TEM). The surface roughness and surface free energy of pDA-modified films were mainly affected by the reaction temperature and showed only a slight dependence on the reaction time and concentration of the dopamine solution. Additionally, three other typical hydrophobic polymer films of polytetrafluoroethylene (PTFE), poly(ethylene terephthalate) (PET), and polyimide (PI) were also modified by the same procedure. The lyophilicity (liquid affinity) and surface free energy of these polymer films were enhanced significantly after being coated with pDA, as were those of PVDF films. It is indicated that the deposition behavior of pDA is not strongly dependent on the nature of the substrates. This information provides us with not only a better understanding of biologically inspired surface chemistry for pDA coatings but also effective strategies for exploiting the properties of dopamine to create novel functional polymer materials.


ACS Applied Materials & Interfaces | 2013

Antifouling and Antimicrobial Polymer Membranes Based on Bioinspired Polydopamine and Strong Hydrogen-Bonded Poly(N-vinyl pyrrolidone)

Jin-Hong Jiang; Liping Zhu; Lijing Zhu; Hongtao Zhang; Bao-Ku Zhu; You-Yi Xu

A facile and versatile approach for the preparation of antifouling and antimicrobial polymer membranes has been developed on the basis of bioinspired polydopamine (PDA) in this work. It is well-known that a tightly adherent PDA layer can be generated over a wide range of material surfaces through a simple dip-coating process in dopamine aqueous solution. The resulting PDA coating is prone to be further surface-tailored and functionalized via secondary treatments because of its robust reactivity. Herein, a typical hydrophobic polypropylene (PP) porous membrane was first coated with a PDA layer and then further modified by poly(N-vinyl pyrrolidone) (PVP) via multiple hydrogen-bonding interactions between PVP and PDA. Data of water contact angle measurements showed that hydrophilicity and wettability of the membranes were significantly improved after introducing PDA and PVP layers. Both permeation fluxes and antifouling properties of the modified membranes were enhanced as evaluated in oil/water emulsion filtration, protein filtration, and adsorption tests. Furthermore, the modified membranes showed remarkable antimicrobial activity after iodine complexation with the PVP layer. The PVP layer immobilized on the membrane had satisfying long-term stability and durability because of the strong noncovalent forces between PVP and PDA coating. The strategy of material surface modification reported here is substrate-independent, and applicable to a broad range of materials and geometries, which allows effective development of materials with novel functional coatings based on the mussel-inspired surface chemistry.


Colloids and Surfaces B: Biointerfaces | 2011

Immobilization of bovine serum albumin onto porous polyethylene membranes using strongly attached polydopamine as a spacer

Liping Zhu; Jin-Hong Jiang; Bao-Ku Zhu; You-Yi Xu

Based on the self-polymerization and strong adhesion characteristics of dopamine in aqueous solution, a novel and convenient approach was developed to immobilize protein onto porous polyethylene (PE) membranes. A thin polydopamine (pDA) layer was formed and tightly coated onto PE membrane by dipping simply the membrane into dopamine aqueous solution for a period of time. Subsequently, bovine serum albumin (BSA) was bound onto the obtained PE/pDA composite membranes via the coupling between BSA and the reactive polydopamine layer. The firm immobilization of polydopamine layer and BSA was verified by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). The results of water contact angle measurement showed that the hydrophilicity of PE membrane was significantly improved after coating polydopamine and binding BSA. The experiments of blood platelet adhesion indicated that BSA-immobilized PE membrane had better blood compatibility than the unmodified PE and the PE/pDA composite membranes. The investigations on hepatocyte cultures and cell viability revealed that the polydopamine coating endowed PE membrane with significantly improved cell compatibility. Compared to BSA surface, polydopamine surface is more favorable for cell adhesion, growth, and proliferation.


Chinese Journal of Polymer Science | 2012

HYDROPHILIC NANOFILTRATION MEMBRANES WITH SELF-POLYMERIZED AND STRONGLY-ADHERED POLYDOPAMINE AS SEPARATING LAYER *

Xiao-Lin Li; Liping Zhu; Jin-Hong Jiang; Zhuan Yi; Bao-Ku Zhu; You-Yi Xu

Inspired by the self-polymerization and strong adhesion characteristics of dopamine in aqueous conditions, a novel hydrophilic nanofiltration (NF) membrane was fabricated by simply dipping polysulfone (PSf) ultrafiltration (UF) substrate in dopamine solution. The changes in surface chemical composition and morphology of membranes were determined by Fourier transform infrared spectroscopy (FTIR-ATR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The experimental results indicated that the self-polymerized dopamine formed an ultrathin and defect-free barrier layer on the PSf UF membrane. The surface hydrophilicity of membranes was evaluated through water contact angle measurements. It was found that membrane hydrophilicity was significantly improved after coating a polydopamine (pDA) layer, especially after double coating. The dyes filtration experiments showed that the double-coated membranes were able to reject completely the dyes of brilliant blue, congo red and methyl orange with a pure water flux of 83.7 L/(m2·h) under 0.6 MPa. The zeta potential determination revealed the positively-charged characteristics of PSf/pDA composite membrane in NF process. The salt rejection of the membranes was characterized by 0.01 mmol/L of salts filtration experiment. It was demonstrated that the salts rejections followed the sequence: NaCl < Na2SO4 < MgSO4 < MgCl2 < CaCl2, and the rejection to CaCl2 reached 68.7%. Moreover, the composite NF membranes showed a good stability in water-phase filtration process.


RSC Advances | 2014

Improving the wettability and thermal resistance of polypropylene separators with a thin inorganic-organic hybrid layer stabilized by polydopamine for lithium ion batteries

Li-Feng Fang; Jin-Hong Jiang; Hao Li; Bao-Ku Zhu; Liping Zhu

This study aims to improve the wettability and thermal resistance of polypropylene (PP) separators for lithium ion batteries. The PP separator was first coated with polydopamine (PDA) on the basis of mussel-inspired surface chemistry. Then a thin inorganic–organic hybrid layer was immobilized onto the PDA-coated separator via a sol–gel process using tetraethoxysilane (TEOS) solutions. This method does not need any commonly-used polymeric binders because of the unique adhesion behaviour of the PDA intermediate layer, which greatly reduces the thickness of the modification layer and avoids excessive pore blocking. Owing to the incorporation of the hybrid layer, the composite separators showed better affinity with the liquid electrolyte and obvious reduction in thermal shrinkage in comparison to the unmodified separator. And the battery performances, such as interfacial resistance, discharge capacity and C-capacity were all improved after modification. Considering the effective adhesion of PDA onto nearly all kinds of separator/membrane surfaces, this modification strategy can be widely used without causing any obvious damage to the mechanical strength of the unmodified separators/membranes.


Journal of Materials Chemistry B | 2015

Improving antifouling ability and hemocompatibility of poly(vinylidene fluoride) membranes by polydopamine-mediated ATRP

Jin-Hong Jiang; Pei-Bin Zhang; Liping Zhu; Bao-Ku Zhu; You-Yi Xu

The present work aims to improve the antifouling properties and hemocompatibility of poly(vinylidene fluoride) (PVDF) membranes by polydopamine-mediated atom transfer radical polymerization (ATRP). Polydopamine (PDA) was first prepared by the oxidation and self-polymerization in basic aqueous solution. The obtained PDA was used as an additive in the preparation of PVDF membranes via non-solvent induced phase separation (NIPS). Then poly(sulfobetaine methacrylate) (PSBMA), a commonly used zwitterionic polymer, was successfully grafted from the entrapped PDA in membranes through ATRP. The changes in surface morphologies of the PVDF membranes before and after modification were observed by scanning electronic microscopy (SEM) and atomic force microscopy (AFM). Data of water contact angle measurements indicated that the surface hydrophilicity of the modified membranes was remarkably improved compared with that of the pure PVDF membrane. Results of filtration tests revealed that the water permeability and antifouling properties of the PVDF membranes were both increased after modification. Moreover, the hemocompatibility of the modified PVDF membrane was greatly improved due to the incorporation of zwitterionic brushes as demonstrated by in vitro platelet adhesion. Owing to the chemical reactivity of polydopamine as well as its strong interactions with a wide spectrum of solid substrates, this strategy can be extended to other materials and allows the development of novel functional membranes through such a blending process and secondary treatments.


Colloids and Surfaces B: Biointerfaces | 2013

Hemocompatible and antibacterial porous membranes with heparinized copper hydroxide nanofibers as separation layer.

Lijing Zhu; Liping Zhu; Zhuan Yi; Jin-Hong Jiang; Bao-Ku Zhu; You-Yi Xu

Here we report the fabrication of a novel heparinized copper hydroxide (Cu(OH)2) nanofiberous membrane with satisfying hemocompatibility and antibacterial properties. The positively charged Cu(OH)2 nanofibers were prepared in a weakly alkaline copper nitrate solution in the presence of 2-aminoethanol. A heparin (Hep) solution was then added dropwise into the solution of nanofibers to immobilize negatively charged heparin onto the Cu(OH)2 nanofibers by electrostatic interaction. A composite Hep@Cu(OH)2 nanofiberous membrane was prepared by filtration and deposition of the heparinized nanofibers onto a polysulfone (PSF) porous membrane. Chemical composition analysis of membrane surface using X-ray photoelectron spectroscopy (XPS) confirmed the successful immobilization of heparin on Cu(OH)2 nanofibers. The amount of immobilized heparin on nanofiberous membrane was determined by a colorimetric assay of toluidine blue dye and the results showed that the amount of immobilized heparin was strongly dependent on the heparin dosage in reaction solution. The results of contact angle measurement indicated that the hydrophilicity of Cu(OH)2 nanofiberous membranes was enhanced by the immobilization of heparin. The adhesion, activation and transmutation of platelets on Hep@Cu(OH)2 membrane were suppressed remarkably due to the introduction of heparin, which suggested that the Hep@Cu(OH)2 membranes had good hemocompatibility. In addition, Cu(OH)2 and Hep@Cu(OH)2 nanofiberous membranes exhibited very good antibacterial activities against Escherichia coli and Staphyloccocus aureus.


Journal of Membrane Science | 2010

Surface modification of PE porous membranes based on the strong adhesion of polydopamine and covalent immobilization of heparin

Jin-Hong Jiang; Liping Zhu; Xiao-Lin Li; You-Yi Xu; Bao-Ku Zhu


Journal of Membrane Science | 2014

Hydrophilic and anti-fouling polyethersulfone ultrafiltration membranes with poly(2-hydroxyethyl methacrylate) grafted silica nanoparticles as additive

Lijing Zhu; Liping Zhu; Jin-Hong Jiang; Zhuan Yi; Yi-Fan Zhao; Bao-Ku Zhu; You-Yi Xu


Journal of Membrane Science | 2014

Improved hydrodynamic permeability and antifouling properties of poly(vinylidene fluoride) membranes using polydopamine nanoparticles as additives

Jin-Hong Jiang; Liping Zhu; Hongtao Zhang; Bao-Ku Zhu; You-Yi Xu

Collaboration


Dive into the Jin-Hong Jiang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hao Li

Zhejiang University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge