Jin-Kui Yang
Capital Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jin-Kui Yang.
Molecular and Cellular Endocrinology | 2014
Jinyang Wang; Yanbin Gao; Na Zhang; Dawei Zou; Peng Wang; Zhiyao Zhu; Jiaoyang Li; Shengnan Zhou; Shao-Cheng Wang; Ying-Ying Wang; Jin-Kui Yang
Epithelial-to-mesenchymal transition (EMT) plays an important role in renal interstitial fibrosis (RIF) with diabetic nephropathy (DN). Smad7 (a inhibitory smad), a downstream signaling molecules of TGF-β1, represses the EMT. The physiological function of miR-21 is closely linked to EMT and RIF. However, it remained unclear whether miR-21 over-expression affected TGF-β1-induced EMT by regulating smad7 in DN. In this study, real-time RT-PCR, cell transfection, luciferase reporter gene assays, western blot and confocal microscope were used, respectively. Here, we found that miR-21 expression was upregulated by TGF-β1 in time- and concentration -dependent manner. Moreover, miR-21 over-expression enhanced TGF-β1-induced EMT(upregulation of a-SMA and downregulation of E-cadherin) by directly down-regulating smad7/p-smad7 and indirectly up-regulating smad3/p-smad3, accompanied by the decrease of Ccr and the increase of col-IV, FN, the content of collagen fibers, RTBM, RTIAW and ACR. Meantime, the siRNA experiment showed that smad7 can directly regulate a-SMA and E-cadherin expression. More importantly, miR-21 inhibitor can not only inhibit EMT and fibrosis but also ameliorate renal structure and function. In conclusion, our results demonstrated that miR-21 overexpression can contribute to TGF-β1-induced EMT by inhibiting target smad7, and that targeting miR-21 may be a better alternative to directly suppress TGF-β1-mediated fibrosis in DN.
Acta Diabetologica | 2012
Chang Liu; Xiaohong Lv; Hong-Xing Li; Xi Cao; Fen Zhang; Lei Wang; Mei Yu; Jin-Kui Yang
Although reactive oxygen species (ROS) contribute to glucose intolerance induced by the renin-angiotensin system (RAS) is well documented, the role of the newly discovered pathway of RAS, angiotensin (Ang)-(1-7)/Mas axis, in this process remains unknown. Here, we examined the effect of Ang-(1-7) on oxidative stress and glucose uptake in adipocytes. We used primary cultured epididymal adipocytes from C57 mice to study Ang-(1-7) effects on glucose uptake. We also treated fully differentiated 3T3-L1 adipocytes with exogenous Ang-(1-7) or overexpression of angiotensin-converting enzyme 2 (ACE2) to induce endogenous generation of Ang-(1-7) to clarify its effects on ROS production. Intracellular ROS was measured by flow cytometry, dihydroethidium (DHE), and nitroblue tetrazolium assay. Levels of NADPH oxidase and adiponectin mRNA were measured by real-time PCR. Ang-(1-7) improved glucose uptake both in basal and insulin-stimulated states. ROS production was slightly but significantly decreased in adipocytes treated with Ang-(1-7). Additionally, Mas receptor antagonist D-Ala7-Ang-(1-7) (A779) reversed the effect of Ang-(1-7) on glucose uptake and oxidative stress. Furthermore, treatment of adipocytes with Ang-(1-7) decreased NADPH oxidase mRNA levels. We also found that oxidative stress induced by glucose oxidase–suppressed expression of adiponectin, an insulin-sensitive protein. However, the suppression of oxidative stress by Ang-(1-7) restored adiponectin expression, while A779 agonists these changes induced by Ang-(1-7). In conclusion, Ang-(1-7) can protect against oxidative stress and improve glucose metabolism in adipocytes. These results show that Ang-(1-7) is a novel target for the improvement of glucose metabolism by preventing oxidative stress.
Molecular and Cellular Endocrinology | 2014
Xi Cao; Fang-Yuan Yang; Zhong Xin; Rong-Rong Xie; Jin-Kui Yang
Blocking the renin-angiotensin system (RAS) can reduce the risk of diabetes. Meanwhile, the angiotensin (Ang)-converting enzyme-2 (ACE2)/Ang-(1-7)/Mas axis has recently been proposed to function as a negative regulator of the RAS. In previous studies, we first demonstrated that ACE2 knockout (ACE2(-/)(y)) mice exhibit impaired glucose tolerance or diabetes. However the precise roles of ACE2 on glucose metabolism are unknown. Here we show that the ACE2/Ang-(1-7)/Mas axis can ameliorate insulin resistance in the liver. Activation of the ACE2/Ang-(1-7)/Mas axis increases glucose uptake and decreases glycogen synthesis in the liver accompanied by increased expression of glucose transporters, insulin receptor substrates and decreased expression of enzymes for glycogen synthesis. ACE2 knockout mice displayed elevated levels of oxidative stress and exposure to Ang-(1-7) reduced the stress in hepatic cells. As a consequence of anti-oxidative stress, activation of the ACE2/Ang-(1-7)/Mas axis led to improved hepatic insulin resistance through the Akt/PI3K/IRS-1/JNK insulin signaling pathway. This is the first time documented that the ACE2/Ang-(1-7)/Mas axis can ameliorate insulin resistance in the liver. As insulin resistance in the liver is considered to be the primary cause of the development of type 2 diabetes, this axis may serve as a new diabetes target.
American Journal of Physiology-renal Physiology | 2014
Jinyang Wang; Yanbin Gao; Na Zhang; Dawei Zou; Liping Xu; Zhiyao Zhu; Jiaoyang Li; Shengnan Zhou; Fangqiang Cui; Xiang-jun Zeng; Jianguo Geng; Jin-Kui Yang
Diabetic nephropathy (DN) is one of the most important diabetic microangiopathies. The epithelial-to-mesenchymal transition (EMT) plays an important role in DN. The physiological role of microRNA-21 (miR-21) was closely linked to EMT. However, it remained elusive whether tongxinluo (TXL) ameliorated renal structure and function by regulating miR-21-induced EMT in DN. This study aimed to determine the effect of TXL on miR-21-induced renal tubular EMT and to explore the relationship between miR-21 and TGF-β1/smads signals. Real-time RT-PCR, cell transfection, in situ hybridization (ISH), and laser confocal microscopy were used, respectively. Here, we revealed that TXL dose dependently lowered miR-21 expression in tissue, serum, and cells. Overexpression of miR-21 can enhance α-smooth muscle actin (SMA) expression and decrease E-cadherin expression by upregulating smad3/p-smad3 expression and downregulating smad7 expression. Interestingly, TXL also increased E-cadherin expression and decreased α-SMA expression by regulating miR-21 expression. More importantly, TXL decreased collagen IV, fibronectin, glomerular basement membrane, glomerular area, and the albumin/creatinine ratio, whereas it increased the creatinine clearance ratio. The results demonstrated that TXL ameliorated renal structure and function by regulating miR-21-induced EMT, which was one of the mechanisms to protect against DN, and that miR-21 may be one of the therapeutic targets for TXL in DN.
PLOS ONE | 2012
Zhong Xin; Ming-Xia Yuan; Hong-Xing Li; Lin Hua; Jian-Ping Feng; Jing Shi; Xiao-Rong Zhu; Xi Cao; Jin-Kui Yang
Background The glycemic thresholds for diabetes diagnosis have long been at the forefront of discussion. However, no information about glycemic cutoff points has been made available for the Chinese population. The aim of the present study was to examine the association of fasting plasma glucose (FPG), 2-h plasma glucose (2-h PG) and HbA1c levels with diabetic retinopathy (DR) and determine the associated cutoff levels in a Chinese population. Methodology and Principal Findings In a cross-sectional population-based sample of 2551 Chinese (representing a population of 1,660,500 in a Beijing district) between 18–79 years of age, the three glycemic measures were measured in a 75 g oral glucose tolerance test, and DR was assessed by two 45° color digital retinal images. The prevalence of DR increased in the ninth decile of each variable, corresponding to an FPG of ≥7.2 mmol/l, a 2-h PG of ≥10.7 mmol/l, and HbA1c of ≥6.4%, according to the Joinpoint regression method. After excluding individuals receiving antihyperglycemic medication, the prevalence significantly increased at an FPG of ≥6.8 mmol/l, a 2-h PG of ≥12.0 mmol/l, and HbA1c of ≥6.7%. The area under the ROC curve for all three measures showed no significant differences for detecting DR. After excluding individuals receiving antihyperglycemic medication, the three measures also showed no significant differences. Conclusions and Significance A significant increase in retinopathy prevalence occurs among individuals with FPG ≥7.2 mmol/l, 2-h PG ≥10.5 mmol/and HbA1c ≥6.4%; and measuring FPG or HbA1c are equally reliable methods as measuring 2-h PG for the diagnosis of diabetes in the Chinese population.
BMC Public Health | 2012
Zhong Xin; Chang Liu; Wen-Yan Niu; Jian-Ping Feng; Lei Zhao; Ya-Hong Ma; Lin Hua; Jin-Kui Yang
BackgroundObesity has been shown to be a prognostic indicator of type 2 diabetes (T2D); however, the power of different obesity indicators in the detection of T2D remains controversial. This study evaluates the detecting power of body mass index (BMI), waist circumference (WC), waist-to-hip ratio (WHR) and waist-to-height ratio (WHTR) for the presence of T2D in undiagnosed diabetics among the Chinese population.MethodsIndividuals were selected from an ongoing large-scale population-based Beijing Community Pre-Diabetes (BCPD) study cohort. The oral glucose tolerance tests (OGTT) were performed to diagnose diabetes. A total of 220 new cases of T2D and 1,868 normal blood glucose subjects were analyzed. ROC curve analyses were used to compare the association of different obesity indicators with T2D and determine the optimal cut-off points of the best predictor for identifying T2D in men and women.ResultsAll indicators positively correlated with presence of T2D in both men and women. In women, WC, WHR and WHTR were similar, but were better in identifying T2D when compared to BMI (P < 0.0001, P=0.0016 and P=0.0001, respectively). In men, WC, WHTR and BMI were similar, but WC and WHTR were better than WHR (P=0.0234, P=0.0101, respectively). For women, 86 cm was the optimal WC cut-off point, and its sensitivity and specificity were 0.714 and 0.616; for men, the optimal cut-off point was 90 cm, and its sensitivity and specificity were 0.722 and 0.571.ConclusionCompared with BMI, WHR and WHTR, WC is a simple and accurate measure for predicting T2D in the Chinese population.
Scientific Reports | 2016
Xi Cao; Fang-Yuan Yang; Ting-Ting Shi; Ming-Xia Yuan; Zhong Xin; Rong-Rong Xie; Sen Li; Hongbing Li; Jin-Kui Yang
The classical axis of renin-angiotensin system (RAS), angiotensin (Ang)-converting enzyme (ACE)/Ang II/AT1, contributes to the development of non-alcoholic fatty liver disease (NAFLD). However, the role of bypass axis of RAS (Angiotensin-converting enzyme 2 (ACE2)/Ang-(1–7)/Mas) in hepatic steatosis is still unclear. Here we showed that deletion of ACE2 aggravates liver steatosis, which is correlated with the increased expression of hepatic lipogenic genes and the decreased expression of fatty acid oxidation-related genes in the liver of ACE2 knockout (ACE2−/y) mice. Meanwhile, oxidative stress and inflammation were also aggravated in ACE2−/y mice. On the contrary, overexpression of ACE2 improved fatty liver in db/db mice, and the mRNA levels of fatty acid oxidation-related genes were up-regulated. In vitro, Ang-(1–7)/ACE2 ameliorated hepatic steatosis, oxidative stress and inflammation in free fatty acid (FFA)-induced HepG2 cells, and what’s more, Akt inhibitors reduced ACE2-mediated lipid metabolism. Furthermore, ACE2-mediated Akt activation could be attenuated by blockade of ATP/P2 receptor/Calmodulin (CaM) pathway. These results indicated that Ang-(1–7)/ACE2/Mas axis may reduce liver lipid accumulation partly by regulating lipid-metabolizing genes through ATP/P2 receptor/CaM signaling pathway. Our findings support the potential role of ACE2/Ang-(1–7)/Mas axis in prevention and treatment of hepatic lipid metabolism.
PLOS ONE | 2012
Jian-Bo Zhou; Chang Liu; Wen-Yan Niu; Zhong Xin; Mei Yu; Jian-Ping Feng; Jin-Kui Yang
Background Gene-gene interactions may be partly responsible for complex traits such as obesity. Increasing evidence suggests that the renin-angiotensin system (RAS) contributes to the etiology of obesity. How the epistasis of genes in the RAS contributes to obesity is still under research. We aim to evaluate the contribution of RAS-related gene interactions to a predisposition of obesity in a Chinese population. Methodology and Principal Findings We selected six single nucleotide polymorphisms (SNPs) located in angiotensin (AGT), angiotensin converting enzyme (ACE), angiotensin type 1 receptor (AGTR1), MAS1, nitric oxide synthase 3 (NOS3) and the bradykinin B2 receptor gene (BDKRB2), and genotyped them in 324 unrelated individuals with obesity (BMI ≥28 kg/m2) and 373 non-obese controls (BMI 18.5 to <24 kg/m2) from a large scale population-based cohort. We analyzed gene-gene interactions among 6 polymorphic loci using the Generalized Multifactor Dimensionality Reduction (GMDR) method, which has been shown to be effective for detecting gene-gene interactions in case-control studies with relatively small samples. Then we used logistic regression models to confirm the best combination of loci identified in the GMDR. It showed a significant gene-gene interaction between the rs220721 polymorphism in the MAS1 gene and the rs1799722 polymorphism in the gene BDKB2R. The best two-locus combination scored 9 for cross-validation consistency and 9 for sign test (p = 0.0107). This interaction showed the maximum consistency and minimum prediction error among all gene-gene interaction models evaluated. Moreover, the combination of the MAS1 rs220721 and the BDKRB2 rs1799722 was associated with a significantly increased risk of obesity (OR 1.82, CI 95%: 1.15–2.88, p = 0.0103). Conclusions and Significance These results suggest that the SNPs from the RAS-related genes may contribute to the risk of obesity in an interactive manner in a Chinese population. The gene-gene interaction may serve as a novel area for obesity research.
PLOS ONE | 2015
Yi-Wen Chen; Ying-Ying Wang; Dong Zhao; Cai-Guo Yu; Zhong Xin; Xi Cao; Jing Shi; Guang-Ran Yang; Ming-Xia Yuan; Jin-Kui Yang
Little is known about the relationship between lower extremity peripheral arterial disease (PAD) and proliferative diabetic retinopathy (PDR) in type 2 diabetes (T2D). Here, we explored the relationship between sight-threatening PDR and PAD. We screened for diabetic retinopathy (DR) and PAD in hospitalized patients with T2D. Patients with a diabetic duration of more than 10 years, HbA1c ≥7.5%, eGFR ≥60mL/min/1.73m2 and with PDR or with no diabetic retinopathy (NDR) were eligible for this cross-sectional study. Severities of DR were graded by digital retinal photographs according to the Early Treatment Diabetic Retinopathy Study (ETDRS) scale. We assessed PAD by measuring Ankle Brachial Index (ABI), Toe Brachial Index (TBI) and Doppler ultrasound. Statistical analyses were performed using SPSS 17.0 software. Of the 1544 patients, 169 patients with extreme eye (57 PDR and 112 NDR) phenotypes met the inclusion criteria. Patients with PDR had a significantly higher proportion of low ABI (≤0.99) and high ABI (≥1.3) than patients with NDR (28.1% and 15.8% vs. 14.3% and 6.2% respectively, P<0.05). PDR patients also had lower TBI than NDR patients (0.56±0.09 vs. 0.61±0.08, P<0.01). The proportion of patients with abnormal duplex ultrasound was higher in PDR than in NDR (21.1% vs. 9.8%, P<0.001). This showed that PDR associated with PAD could be defined in multiple ways: abnormal ABI (≤0.9) (OR = 3.61, 95% CI: 1.15–11.26), abnormal TBI (OR = 2.84, 95% CI: 1.19–6.64), abnormal duplex (OR = 3.28, 95% CI: 1.00–10.71), and critical limb ischemia (OR = 5.52, 95% CI: 2.14–14.26). Moreover, PDR was a stronger independent correlation factor for PAD than a diabetic duration of 10 years. In conclusion, PAD is more common in PDR than in NDR. It implies that PDR and PAD are mostly concomitant in T2D. We should focus on screening PAD in patients with PDR in clinical practice.
Diabetes Care | 2010
Jin-Kui Yang; Jian-Bo Zhou; Zhong Xin; Lei Zhao; Mei Yu; Jian-Ping Feng; Hui Yang; Ya-Hong Ma
OBJECTIVE To explore the association between epistasis among related genes of the renin-angiotensin system (RAS) and type 2 diabetes. RESEARCH DESIGN AND METHODS Gene polymorphisms were genotyped in 394 type 2 diabetic patients and 418 healthy control subjects in this case-control study. We used the multifactor dimensionality reduction method to identify gene-gene interactions. RESULTS No single locus was associated with type 2 diabetes, except for the insert/deletion (I/D) polymorphism of the ACE gene in female subjects. In multi-locus analyses, in male subjects the model of rs2106809 (ACE2), rs220721 (Mas), rs699 (AGT), and I/D (ACE) was significant (P = 0.043). This combination was associated with a 4.00 times (95% CI 2.51–6.38; P < 0.0001) greater prevalence of type 2 diabetes. In female subjects, the model of rs2106809 (ACE2), I/D (ACE), and rs1403543 (AGTR2) was significant (P = 0.012). This three-locus combination was associated with a 2.76 times (1.91–3.97; P < 0.0001) greater prevalence of type 2 diabetes. CONCLUSIONS Interactions among RAS-related genes were associated with type 2 diabetes in a Chinese population.