Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jin-Lan Huang is active.

Publication


Featured researches published by Jin-Lan Huang.


Carcinogenesis | 2014

Characteristics of long non-coding RNA and its relation to hepatocellular carcinoma

Jin-Lan Huang; Lei Zheng; Yan-Wei Hu; Qian Wang

Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide with high prevalence and lethality. However, the underlying mechanism for HCC has not been entirely elucidated. Recent studies have highlighted the roles of long non-coding RNAs (lncRNAs) in carcinogenesis, and it is suggested that they might play critical roles in HCC progression. Here, we will briefly introduce the biology of lncRNAs, emphasizing the mechanisms and emerging roles of HCC-related lncRNAs. To date, HCC-related lncRNAs are demonstrated to influence the life cycle of genes by various means including epigenetic silencing, splicing regulation, lncRNA-miRNA interaction, lncRNA-protein interaction and genetic variation. Moreover, they can participate in diverse biological processes involved in HCC progression through impacts upon cell proliferation, apoptosis, invasion and metastasis and angiogenesis. Since lncRNA can present in body fluid and have good specificity and accessibility, some HCC-related lncRNAs are suggested to be useful as novel potential biomarkers for HCC diagnosis, prognosis and prediction of response to therapy. Those HCC-related lncRNAs may provide potential novel therapeutic targets for HCC and other diseases.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2015

RP5-833A20.1/miR-382-5p/NFIA–Dependent Signal Transduction Pathway Contributes to the Regulation of Cholesterol Homeostasis and Inflammatory Reaction

Yan-Wei Hu; Jia-Yi Zhao; Shu-Fen Li; Jin-Lan Huang; Yu-Rong Qiu; Xin Ma; Shao-Guo Wu; Zhi-Ping Chen; Ya-Rong Hu; Jun-Yao Yang; Yan-Chao Wang; Ji-Juan Gao; Yan-Hua Sha; Lei Zheng; Qian Wang

Objective—Cardiovascular disease caused by atherosclerosis is the number one cause of death in Western countries and threatens to become the major cause of morbidity and mortality worldwide. Long noncoding RNAs are emerging as new players in gene regulation, but how long noncoding RNAs operate in the development of atherosclerosis remains unclear. Approach and Results—Using microarray analysis, we found that long noncoding RNA RP5-833A20.1 expression was upregulated, whereas nuclear factor IA (NFIA) expression was downregulated in human acute monocytic leukemia macrophage–derived foam cells. Moreover, we showed that long noncoding RNA RP5-833A20.1 may decreases NFIA expression by inducing hsa-miR-382-5p expression in vitro. We found that the RP5-833A20.1/hsa-miR-382-5p/NFIA pathway is essential to the regulation of cholesterol homeostasis and inflammatory responses in human acute monocytic leukemia macrophages. Lentivirus-mediated NFIA overexpression increased high-density lipoprotein cholesterol circulation, reduced low-density lipoprotein cholesterol, and very-low-density lipoprotein cholesterol circulation, decreased circulation of inflammatory cytokines, including interleukin-1&bgr;, interleukin-6, tumor necrosis factor-&agr;, and C-reactive protein, enhanced reverse cholesterol transport, and promoted regression of atherosclerosis in apolipoprotein E–deficient mice. Conclusions—Our findings indicated that the RP5-833A20.1/miR-382-5p/NFIA pathway was essential to the regulation of cholesterol homeostasis and inflammatory reactions and suggested that NFIA may represent a therapeutic target to ameliorate cardiovascular disease.


Oncotarget | 2015

HBx-related long non-coding RNA DBH-AS1 promotes cell proliferation and survival by activating MAPK signaling in hepatocellular carcinoma.

Jin-Lan Huang; Ting-Yu Ren; Shun-Wang Cao; Shi-hao Zheng; Xiu-Mei Hu; Yan-Wei Hu; Li Lin; Jing Chen; Lei Zheng; Qian Wang

Accumulating evidence supports an important role for the hepatitis B virus x protein (HBx) in the pathogenesis of hepatitis B virus (HBV)-induced hepatocellular carcinoma (HCC), but the underlying mechanisms are not entirely clear. Here, we identified a novel long noncoding RNA (lncRNA) DBH-AS1 involved in the HBx-mediated hepatocarcinogenesis. The levels of DBH-AS1 were positively correlated with hepatitis B surface antigen (HBsAg) and tumor size in HCC tissues. Functionally, transgenic expression of DBH-AS1 significantly enhanced cell proliferation and tumorigenesis, whereas short hairpin RNA knockdown of DBH-AS1 caused an inhibition of cell proliferation. Mechanistically, overexpression of DBH-AS1 induced cell cycle progression by accelerating G1/S and G2/M transition concomitantly with upregulation of CDK6, CCND1, CCNE1 and downregulation of p16, p21 and p27. We also found that enhanced DBH-AS1 expression inhibited serum starvation-induced apoptosis of HCC cells. In contrast, suppressed DBH-AS1 expression had opposite effects. Furthermore, DBH-AS1 was shown to activate MAPK pathway. We also provide evidence that DBH-AS1 could be significantly induced by HBx protein and markedly down-regulated by p53. Thus, we concluded that DBH-AS1 can be induced by HBx and inactivated by p53, and consequently promote cell proliferation and cell survival through activation of MAPK signaling in HCC. Our study suggests that DBH-AS1 acts as an oncogene for HCC.


BMC Cancer | 2014

microRNA-141 inhibits cell proliferation and invasion and promotes apoptosis by targeting hepatocyte nuclear factor-3β in hepatocellular carcinoma cells

Li Lin; Hongwei Liang; Yanbo Wang; Xiaomao Yin; Yan-Wei Hu; Jin-Lan Huang; Ting-Yu Ren; Hui Xu; Lei Zheng; Xi Chen

BackgroundHepatocyte nuclear factor-3β (HNF-3β) plays a critical role in hepatocyte differentiation and controls liver-specific gene expression during the development of hepatocellular carcinoma (HCC), but the molecular basis of this process has not been fully elucidated. microRNAs (miRNAs) are powerful, post-transcriptional regulators of gene expression. Whether miRNAs can impact the effects of HNF-3β in HCC is still unknown.MethodsHNF-3β and miR-141 expression levels were detected in HepG2 cells, using real-time quantitative RT-PCR (qRT-PCR). Luciferase reporter assays and Western blots were used to validate HNF-3β as a direct target gene of miR-141. Cell proliferation, invasion, and apoptosis were also examined to confirm whether miR-141 could impact on HNF-3β in HCC.ResultsIn this study, we found that HNF-3β protein levels were consistently upregulated in HCC clinical tissues compared with matched normal adjacent tissues. However, the mRNA levels of HNF-3β varied in random tissues, suggesting that a post-transcriptional mechanism was involved in its regulation. We used bioinformatic analyses to search for miRNAs that could potentially target HNF-3β, and identified specific targeting sites for miR-141 in the 3′-untranslated region (3′-UTR) of the HNF-3β gene. By overexpressing miR-141 in HepG2 cells, we experimentally validated that miR-141 directly regulated HNF-3β expression. Furthermore, the biological consequences of targeting HNF-3β by miR-141 were examined using cell proliferation, invasion and apoptosis assays in vitro. We demonstrated that the repression of HNF-3β by miR-141 suppressed the proliferation and invasion and promoted the apoptosis of HepG2 cells.ConclusionsmiR-141 functions as a tumor suppressor in HCC cells through the inhibition of HNF-3β translation.


PLOS ONE | 2014

Nur77 Decreases Atherosclerosis Progression in apoE−/− Mice Fed a High-Fat/High-Cholesterol Diet

Yan-Wei Hu; Peng Zhang; Jun-Yao Yang; Jin-Lan Huang; Xin Ma; Shu-Fen Li; Jia-Yi Zhao; Ya-Rong Hu; Yan-Chao Wang; Ji-Juan Gao; Yan-Hua Sha; Lei Zheng; Qian Wang

Rationale It is clear that lipid disorder and inflammation are associated with cardiovascular diseases and underlying atherosclerosis. Nur77 has been shown to be involved in inflammatory response and lipid metabolism. Objective Here, we explored the role of Nur77 in atherosclerotic plaque progression in apoE−/− mice fed a high-fat/high cholesterol diet. Methods and Results The Nur77 gene, a nuclear hormone receptor, was highly induced by treatment with Cytosporone B (Csn-B, specific Nur77 agonist), recombinant plasmid over-expressing Nur77 (pcDNA-Nur77), while inhibited by treatment with siRNAs against Nur77 (si-Nur77) in THP-1 macrophage-derived foam cells, HepG2 cells and Caco-2 cells, respectively. In addition, the expression of Nur77 was highly induced by Nur77 agonist Csn-B, lentivirus encoding Nur77 (LV-Nur77), while silenced by lentivirus encoding siRNA against Nur77 (si-Nur77) in apoE−/− mice fed a high-fat/high cholesterol diet, respectively. We found that increased expression of Nur77 reduced macrophage-derived foam cells formation and hepatic lipid deposition, downregulated gene levels of inflammatory molecules, adhesion molecules and intestinal lipid absorption, and decreases atherosclerotic plaque formation. Conclusion These observations provide direct evidence that Nur77 is an important nuclear hormone receptor in regulation of atherosclerotic plaque formation and thus represents a promising target for the treatment of atherosclerosis.


Oncotarget | 2016

MicroRNA-27b up-regulated by human papillomavirus 16 E7 promotes proliferation and suppresses apoptosis by targeting polo-like kinase2 in cervical cancer

Fei Liu; Shimeng Zhang; Zhen Zhao; Xinru Mao; Jin-Lan Huang; Zixian Wu; Lei Zheng; Qian Wang

The infection with high-risk human papillomavirus is linked to cervical cancer, nevertheless, the role of miRNAs regulated by HPV oncogenes in cancer progression remain largely unknown. Here, we knocked down endogenous E6/E7 in HPV16-positive CaSki cell lines, screened differences in miRNA expression profile with control using miRNA array. 38 miRNAs were down-regulated and 6 miRNAs were up-regulated in the E6/E7 silenced CaSki cells (>2-fold changes with P <0.05). The levels of miR-27b, miR-20a, miR-24, miR-93, and miR-106b were verified by qPCR in E6/E7 silenced CaSki and SiHa cells. MiR-27b, up-regulated by E7, promoted CaSki and SiHa cell proliferation and invasion, inhibit paclitaxel-induced apoptosis. Dual-luciferase experiment confirmed miR-27b down-regulated its target gene PLK2 through the “seed regions”. The tumor suppressor PLK2 inhibited SiHa cell proliferation, reduced cell viability, and promoted paclitaxel/cisplatin -induced apoptosis. Furthermore, DGCR8 was found to mediate the up-regulation of miR-27b by HPV16 E7. Our study demonstrated that HPV16 E7 could increase DGCR8 to promote the generation of miR-27b, which accelerated cell proliferation and inhibited paclitaxel-induced cell apoptosis through down-regulating PLK2. These findings provide an insight into the interaction network of viral oncogene, miR-27b and PLK2, and support the potential strategies using antisense nucleic acid of miR-27b for therapy of cervical cancer in the future.


International Journal of Oncology | 2015

Elevation of miR-27b by HPV16 E7 inhibits PPARγ expression and promotes proliferation and invasion in cervical carcinoma cells

Shimeng Zhang; Fei Liu; Xinru Mao; Jin-Lan Huang; Jun-Yao Yang; Xiaomao Yin; Lijuan Wu; Lei Zheng; Qian Wang

MicroRNAs (miRNAs) have been reported to be involved in multiple biological pathways that can influence tumor progression and metastasis. High-risk human papillomavirus (HR-HPVs) is aetiologically correlated to cervical cancer. Recently, miRNAs were reported to be regulated by virus and play pivotal roles in HPV-related tumor progression. However, the underlying mechanism remains poorly understood. In the present study, we report that HPV16 E7 upregulated miR-27b to promote proliferation and invasion in cervical cancer. The results showed that PPARγ, as a target of miR-27b, played a significant role in suppressing cervical cancer progression by downregulating the sodium-hydrogen exchanger isoform 1 (NHE1). It was also shown that the inhibition of miR-27b diminished the ability of HPV16 E7 to suppress PPARγ or activate NHE1 expression. In addition, we observed high expression of miR-27b and NHE1, but low expression of PPARγ in HPV16-positive cervical cancer tissues. In summary, the present study revealed that miR-27b is upregulated by HPV16 E7 to inhibit PPARγ expression and promotes proliferation and invasion in cervical carcinoma cells.


PLOS ONE | 2013

Dihydrocapsaicin Attenuates Plaque Formation through a PPARγ/LXRα Pathway in apoE(-/-) Mice Fed a High-Fat/High-Cholesterol Diet.

Yan-Wei Hu; Xin Ma; Jin-Lan Huang; Xinru Mao; Jun-Yao Yang; Jia-Yi Zhao; Shu-Fen Li; Yu-Rong Qiu; Jia Yang; Lei Zheng; Qian Wang

Aims Atherosclerosis is a chronic inflammatory disease and represents the major cause of cardiovascular morbidity and mortality. There is evidence that dihydrocapsaicin (DHC) can exert multiple pharmacological and physiological effects. Here, we explored the effect of DHC in atherosclerotic plaque progression in apoE−/− mice fed a high-fat/high-cholesterol diet. Methods and Results apoE−/− mice were randomly divided into two groups and fed a high-fat/high-cholesterol diet with or without DHC for 12 weeks. We demonstrated that cellular cholesterol content was significantly decreased while apoA1-mediated cholesterol efflux was significantly increased following treatment with DHC in THP-1 macrophage-derived foam cells. We also observed that plasma levels of TG, LDL-C, VLDL-C, IL-1β, IL-6, TNF-α and CRP were markedly decreased while plasma levels of apoA1 and HDL-C were significantly increased, and consistent with this, atherosclerotic lesion development was significantly inhibited by DHC treatment of apoE−/− mice fed a high-fat/high-cholesterol diet. Moreover, treatment with both LXRα siRNA and PPARγ siRNA made the up-regulation of DHC on ABCA1, ABCG1, ABCG5, SR-B1, NPC1, CD36, LDLR, HMGCR, apoA1 and apoE expression notably abolished while made the down-regulation of DHC on SRA1 expression markedly compensated. And treatment with PPARγ siRNA made the DHC-induced up-regulation of LXRα expression notably abolished while treatment with LXRα siRNA had no effect on DHC-induced PPARγ expression. Conclusion These observations provide direct evidence that DHC can significantly decrease atherosclerotic plaque formation involving in a PPARγ/LXRα pathway and thus DHC may represent a promising candidate for a therapeutic agent for the treatment or prevention of atherosclerosis.


Archives of Biochemistry and Biophysics | 2013

Anti-inflammatory effects of propofol are mediated by apolipoprotein M in a hepatocyte nuclear factor-1α-dependent manner.

Xin Ma; Yan-Wei Hu; Zhen-Long Zhao; Lei Zheng; Yu-Rong Qiu; Jin-Lan Huang; Xiao-Juan Wu; Xinru Mao; Jia Yang; Jia-Yi Zhao; Shu-Fen Li; Miao-Ning Gu; Qian Wang

Propofol (2,6-diisopropylphenol) is probably the most widely used intravenous hypnotic agent in daily practice. However, its anti-inflammatory properties have seldom been addressed. In this study, we evaluated the anti-inflammatory activity and mechanisms of propofol on lipopolysaccharide (LPS)-induced inflammation in vivo and in vitro and found that propofol markedly inhibited LPS-induced production of pro-inflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, and expression of inducible nitric oxide synthase (iNOS). At the same time, the expression of hepatocyte nuclear factor-1α (HNF-1α) and apolipoprotein M (APOM) was inhibited by treatment with LPS and LPS-induced down-regulation of HNF-1α expression and APOM expression could be compensated by propofol treatment. However, propofol could not compensate LPS-induced down-regulation of APOM expression by treatment with HNF-1α siRNA and the suppressive effect on LPS-induced pro-inflammatory cytokines production by propofol was significantly compensated by treatment with APOM siRNA. These results provide evidence that propofol may first up-regulate APOM expression by enhancing HNF-1α expression and then inhibit pro-inflammatory cytokine production in LPS-stimulated cells. Therefore, our study may be useful in understanding the critical effect of propofol in patients with systemic inflammatory response syndrome.


Oncotarget | 2017

Long non-coding RNA UBE2CP3 promotes tumor metastasis by inducing epithelial-mesenchymal transition in hepatocellular carcinoma

Shun-Wang Cao; Jin-Lan Huang; Jing Chen; Yan-Wei Hu; Xiu-Mei Hu; Ting-Yu Ren; Shi-hao Zheng; Jinduan Lin; Jing Tang; Lei Zheng; Qian Wang

Hepatocellular carcinoma (HCC) is a highly aggressive, solid malignancy that has a poor prognosis. Long non-coding RNAs (lncRNAs) have been found to be dysregulated in various cancers, including HCC. However, the molecular mechanism involving lncRNAs in HCC remains largely unknown. In this study, lncRNAs differentially expressed between HCC and corresponding non-cancerous tissue were identified by microarray analysis. A specific differentially expressed lncRNA UBE2CP3 (ubiquitin conjugating enzyme E2 C pseudogene 3) was identified. LncRNA UBE2CP3 was frequently up-regulated in HCC samples as assessed by quantitative real-time polymerase chain reaction (qRT-PCR) and in situ hybridization (ISH) experiments. Clinical data showed that high levels of lncRNA UBE2CP3 were correlated with poor prognosis in HCC patients. Functional studies demonstrated that over-expression of lncRNA UBE2CP3 promoted cell invasion and migration in vitro and in vivo. Mechanistically, enhanced expression of lncRNA UBE2CP3 increased the expression of Snail1 and N-cadherin, but decreased the expression of E-cadherin, thus promoting the process of epithelial to mesenchymal transition (EMT) and finally inducing cell invasion and migration. Furthermore, serum levels of lncRNA UBE2CP3 were increased in HCC patients and decreased after surgery. Our results suggest that lncRNA UBE2CP3 promotes the metastasis of HCC and that serum lncRNA UBE2CP3 may be a new biomarker for the diagnosis of HCC.Hepatocellular carcinoma (HCC) is a highly aggressive, solid malignancy that has a poor prognosis. Long non-coding RNAs (lncRNAs) have been found to be dysregulated in various cancers, including HCC. However, the molecular mechanism involving lncRNAs in HCC remains largely unknown. In this study, lncRNAs differentially expressed between HCC and corresponding non-cancerous tissue were identified by microarray analysis. A specific differentially expressed lncRNA UBE2CP3 (ubiquitin conjugating enzyme E2 C pseudogene 3) was identified. LncRNA UBE2CP3 was frequently up-regulated in HCC samples as assessed by quantitative real-time polymerase chain reaction (qRT-PCR) and in situ hybridization (ISH) experiments. Clinical data showed that high levels of lncRNA UBE2CP3 were correlated with poor prognosis in HCC patients. Functional studies demonstrated that over-expression of lncRNA UBE2CP3 promoted cell invasion and migration in vitro and in vivo. Mechanistically, enhanced expression of lncRNA UBE2CP3 increased the expression of Snail1 and N-cadherin, but decreased the expression of E-cadherin, thus promoting the process of epithelial to mesenchymal transition (EMT) and finally inducing cell invasion and migration. Furthermore, serum levels of lncRNA UBE2CP3 were increased in HCC patients and decreased after surgery. Our results suggest that lncRNA UBE2CP3 promotes the metastasis of HCC and that serum lncRNA UBE2CP3 may be a new biomarker for the diagnosis of HCC.

Collaboration


Dive into the Jin-Lan Huang's collaboration.

Top Co-Authors

Avatar

Lei Zheng

Southern Medical University

View shared research outputs
Top Co-Authors

Avatar

Qian Wang

Southern Medical University

View shared research outputs
Top Co-Authors

Avatar

Yan-Wei Hu

Southern Medical University

View shared research outputs
Top Co-Authors

Avatar

Jia-Yi Zhao

Southern Medical University

View shared research outputs
Top Co-Authors

Avatar

Shu-Fen Li

Southern Medical University

View shared research outputs
Top Co-Authors

Avatar

Shun-Wang Cao

Southern Medical University

View shared research outputs
Top Co-Authors

Avatar

Ting-Yu Ren

Southern Medical University

View shared research outputs
Top Co-Authors

Avatar

Xin Ma

Southern Medical University

View shared research outputs
Top Co-Authors

Avatar

Xiu-Mei Hu

Southern Medical University

View shared research outputs
Top Co-Authors

Avatar

Jun-Yao Yang

Southern Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge