Jin-Qing Liu
Ohio State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jin-Qing Liu.
Journal of Clinical Investigation | 2003
Xue-Feng Bai; Jin-Qing Liu; Ou Li; Pan Zheng; Yang Liu
It is established that mutations in viral antigenic epitopes, or antigenic drifts, allow viruses to escape recognition by both Abs and T lymphocytes. It is unclear, however, whether tumor cells can escape immune recognition via antigenic drift. Here we show that adoptive therapy with both monoclonal and polyclonal transgenic CTLs, specific for a natural tumor antigen, P1A, selects for multiple mutations in the P1A antigenic epitope. These mutations severely diminish T cell recognition of the tumor antigen by a variety of mechanisms, including modulation of MHC:peptide interaction and TCR binding to MHC:peptide complex. These results provide the first evidence for tumor evasion of T cell recognition by antigenic drift, and thus have important implications for the strategy of tumor immunotherapy.
Journal of Experimental Medicine | 2002
Jian-Xin Gao; Huiming Zhang; Xue-Feng Bai; Jing Wen; Xincheng Zheng; Jin-Qing Liu; Pan Zheng; Yang Liu
A number of in vitro studies have suggested that costimulatory molecules B7-1 and B7-2 and their receptor CD28 can promote clonal deletion, and limited in vivo studies have indicated that CD28 is involved in the clonal deletion of some T cells. However, the significance of B7-mediated clonal deletion in preventing autoimmune diseases has not been studied systematically. Here we report that the perinatal blockade of B7-1 and B7-2 substantially inhibits the clonal deletion of T cells in the thymus and leads to an accumulation of T cells capable of inducing fatal multiorgan inflammation. These results reveal a critical role for costimulatory molecules B7-1 and B7-2 in deleting pathogenic autoreactive T cells in the thymus. The critical role of B7-1 and B7-2 in T cell clonal deletion may explain, at least in part, the paradoxical increase of autoimmune disease in mice deficient for this family of costimulatory molecules, such as cytotoxic T lymphocyte associated molecule 4, CD28, and B7-2. The strong pathogenicity of the self-reactive T cells supports a central hypothesis in immunology, which is that clonal deletion plays an important role in preventing autoimmune diseases.
Journal of Immunology | 2013
Zhihui Wang; Jin-Qing Liu; Zhenzhen Liu; Rulong Shen; Guoqiang Zhang; Jianping Xu; Sujit Basu; Youmei Feng; Xue-Feng Bai
IL-35 is a member of the IL-12 family of cytokines that is comprised of an IL-12 p35 subunit and an IL-12 p40-related protein subunit, EBV-induced gene 3 (EBI3). IL-35 functions through IL-35R and has a potent immune-suppressive activity. Although IL-35 was demonstrated to be produced by regulatory T cells, gene-expression analysis revealed that it is likely to have a wider distribution, including expression in cancer cells. In this study, we demonstrated that IL-35 is produced in human cancer tissues, such as large B cell lymphoma, nasopharyngeal carcinoma, and melanoma. To determine the roles of tumor-derived IL-35 in tumorigenesis and tumor immunity, we generated IL-35–producing plasmacytoma J558 and B16 melanoma cells and observed that the expression of IL-35 in cancer cells does not affect their growth and survival in vitro, but it stimulates tumorigenesis in both immune-competent and Rag1/2-deficient mice. Tumor-derived IL-35 increases CD11b+Gr1+ myeloid cell accumulation in the tumor microenvironment and, thereby, promotes tumor angiogenesis. In immune-competent mice, spontaneous CTL responses to tumors are diminished. IL-35 does not directly inhibit tumor Ag–specific CD8+ T cell activation, differentiation, and effector functions. However, IL-35–treated cancer cells had increased expression of gp130 and reduced sensitivity to CTL destruction. Thus, our study indicates novel functions for IL-35 in promoting tumor growth via the enhancement of myeloid cell accumulation, tumor angiogenesis, and suppression of tumor immunity.
Journal of Clinical Investigation | 2000
Xue-Feng Bai; Jin-Qing Liu; Xingluo Liu; Yong Guo; Karen Cox; Jing Wen; Pan Zheng; Yang Liu
Induction of myelin-specific CD4 T cells is a pivotal event in the development of experimental autoimmune encephalomyelitis (EAE). Other checkpoints in EAE pathogenesis have not been clearly defined, although multiple genetic loci are known to influence EAE development. We report here that targeted mutation of the heat-stable antigen (HSA) abrogates development of EAE despite a complete lack of effect on induction of autoimmune T cells. To test whether T-cell expression of HSA is sufficient, we created transgenic mice in which HSA is expressed exclusively in the T-cell lineage. We found that these mice remain resistant to EAE induction. Adoptive transfer studies demonstrate that both T cells and non-T cells must express HSA in order for the pathogenic T cells to execute their effector function. Moreover, HSAIg, a fusion protein consisting of the extracellular domain of the HSA and the Fc portion of immunoglobulin, drastically ameliorates the clinical sign of EAE even when administrated after self-reactive T cells had been expanded. Thus, identification of HSA as a novel checkpoint, even after activation and expansion of self-reactive T cells, provides a novel approach for immunotherapy of autoimmune neurologic diseases, such as multiple sclerosis.
Journal of Immunology | 2012
Jin-Qing Liu; Zhenzhen Liu; Xuejun Zhang; Yun Shi; Fatemeh Talebian; Joseph W. Carl; Chuan Yu; Fu-Dong Shi; Caroline C. Whitacre; Joanne Trgovcich; Xue-Feng Bai
EBV-induced gene 3 (EBI3)-encoded protein can form heterodimers with IL-27P28 and IL-12P35 to form IL-27 and IL-35. IL-27 and IL-35 may influence autoimmunity by inhibiting Th17 differentiation and facilitating the inhibitory roles of Foxp3+ regulatory T (Treg) cells, respectively. In this study, we have evaluated the development of experimental autoimmune encephalomyelitis (EAE) in EBI3-deficient mice that lack both IL-27 and IL-35. We found that myelin oligodendrocyte glycoprotein peptide immunization resulted in marginally enhanced EAE development in EBI3-deficient C57BL6 and 2D2 TCR-transgenic mice. EBI3 deficiency resulted in significantly increased Th17 and Th1 responses in the CNS and increased T cell production of IL-2 and IL-17 in the peripheral lymphoid organs. EBI3-deficient and -sufficient 2D2 T cells had equal ability in inducing EAE in Rag1−/− mice; however, more severe disease was induced in EBI3−/−Rag1−/− mice than in Rag1−/− mice by 2D2 T cells. EBI3-deficient mice had increased numbers of CD4+Foxp3+ Treg cells in peripheral lymphoid organs. More strikingly, EBI3-deficient Treg cells had more potent suppressive functions in vitro and in vivo. Thus, our data support an inhibitory role for EBI3 in Th17, Th1, IL-2, and Treg responses. Although these observations are consistent with the known functions of IL-27, the IL-35 contribution to the suppressive functions of Treg cells is not evident in this model. Increased Treg responses in EBI3−/− mice may explain why the EAE development is only modestly enhanced compared with wild-type mice.
Journal of Immunology | 2001
Xue-Feng Bai; Jonathan Bender; Jin-Qing Liu; Huiming Zhang; Yin Wang; Ou Li; Peishuang Du; Pan Zheng; Yang Liu
Cytotoxic T cells recognize tumor Ags and destroy cancer cells in vitro. Adoptive transfer studies with transgenic T cells specific for tumor Ags have demonstrated that CTL are effective only in mice with small tumor burdens and thus appear to have limited potential in cancer immunotherapy. Here we used transgenic mice that express the TCR specific for an unmutated tumor Ag P1A and multiple lineages of P1A-expressing tumors to address this critical issue. We found that local costimulation, either by expression of B7-1 on the tumor cells or by local administration of anti-CD28 mAb 37N, reinvigorated the function of CTL specific for the tumor Ag, as it substantially increased the efficacy of CTL therapy for mice with large tumor burdens. Our study suggests that CTL-based immunotherapy can be manipulated to deal with large tumors.
Journal of Immunology | 2007
Jin-Qing Liu; Joseph W. Carl; Pramod S. Joshi; Abhik Ray-Chaudhury; Xin-An Pu; Fu-Dong Shi; Xue-Feng Bai
CD24 is a cell surface glycoprotein that is expressed on both immune cells and cells of the CNS. We have previously shown that CD24 is required for the induction of experimental autoimmune encephalomyelitis (EAE), an experimental model for the human disease multiple sclerosis (MS). The development of EAE requires CD24 expression on both T cells and non-T host cells in the CNS. To understand the role of CD24 on the resident cells in the CNS during EAE development, we created CD24 bone marrow chimeras and transgenic mice in which CD24 expression was under the control of a glial fibrillary acidic protein promotor (AstroCD24TG mice). We showed that mice lacking CD24 expression on the CNS resident cells developed a mild form of EAE; in contrast, mice with overexpression of CD24 in the CNS developed severe EAE. Compared with nontransgenic mice, the CNS of AstroCD24TG mice had higher expression of cytokine genes such as IL-17 and demyelination-associated marker P8; the CNS of AstroCD24TG mice accumulated higher numbers of Th17 and total CD4+ T cells, whereas CD4+ T cells underwent more proliferation during EAE development. Expression of CD24 in CD24-deficient astrocytes also enhanced their costimulatory activity to myelin oligodendrocyte glycoprotein-specific, TCR-transgenic 2D2 T cells. Thus, CD24 on the resident cells in the CNS enhances EAE development via costimulation of encephalitogenic T cells. Because CD24 is increased drastically on resident cells in the CNS during EAE, our data have important implications for CD24-targeted therapy of MS.
Journal of Immunology | 2008
Joseph W. Carl; Jin-Qing Liu; Pramod S. Joshi; Hani Y. El-Omrani; Lijie Yin; Xincheng Zheng; Caroline C. Whitacre; Yang Liu; Xue-Feng Bai
Despite negative selection in the thymus, significant numbers of autoreactive T cells still escape to the periphery and cause autoimmune diseases when immune regulation goes awry. It is largely unknown how these T cells escape clonal deletion. In this study, we report that CD24 deficiency caused deletion of autoreactive T cells that normally escape negative selection. Restoration of CD24 expression on T cells alone did not prevent autoreactive T cells from deletion; bone marrow chimera experiments suggest that CD24 on radio-resistant stromal cells is necessary for preventing deletion of autoreactive T cells. CD24 deficiency abrogated the development of experimental autoimmune encephalomyelitis in transgenic mice with a TCR specific for a pathogenic autoantigen. The role of CD24 in negative selection provides a novel explanation for its control of genetic susceptibility to autoimmune diseases in mice and humans.
Cancer Research | 2006
Xue-Feng Bai; Jin-Qing Liu; Pramod S. Joshi; Lizhong Wang; Lijie Yin; Jadwiga Labanowska; Nyla A. Heerema; Pan Zheng; Yang Liu
Tumor evasion of T-cell immunity remains a significant obstacle to adoptive T-cell therapy. It is unknown whether the mode of immune evasion is dictated by the cancer cells or by the tumor antigens. Taking advantage of the fact that multiple lineages of tumor cells share the tumor antigen P1A, we adoptively transferred transgenic T cells specific for P1A (P1CTL) into mice with established P1A-expressing tumors, including mastocytoma P815, plasmocytoma J558, and fibrosarcoma Meth A. Although P1CTL conferred partial protection, tumors recurred in almost all mice. Analysis of the status of the tumor antigen revealed that all J558 tumors underwent antigenic drift whereas all P815 tumors experienced antigenic loss. Interestingly, although Meth A cells are capable of both antigenic loss and antigenic drift, the majority of recurrent Meth A tumors retained P1A antigen. The ability of Meth A to induce apoptosis of P1CTL in vivo alleviated the need for antigenic drift and antigenic loss. Our data showed that, in spite of their shared tumor antigen, different lineages of cancer cells use different mechanisms to evade T-cell therapy.
Journal of Leukocyte Biology | 2006
Pramod S. Joshi; Jin-Qing Liu; Yin Wang; Xing Chang; John O. Richards; Erika Assarsson; Fu-Dong Shi; Hans-Gustaf Ljunggren; Xue-Feng Bai
Cytokine‐induced killer (CIK) cells are ex vivo, expanded T cells with proven anticancer activity in vitro and in vivo. However, their functional properties with the exception of their cancer cell‐killing activity are largely unclear. Here, we show that CIK T cells recognize dendritic cells (DC), and although mature DC (mDC) induce CIK T cells to produce IFN‐γ, immature DC (iDC) are killed selectively by them. Moreover, CIK T cell activation by mDC and their destruction of iDC are independent of the TCR. The cytotoxicity of CIK T cells to iDC is perforin‐dependent. Our data have revealed an important regulatory role of CIK cells.