Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jin Suo is active.

Publication


Featured researches published by Jin Suo.


Circulation | 2011

Coronary Artery Wall Shear Stress Is Associated With Progression and Transformation of Atherosclerotic Plaque and Arterial Remodeling in Patients With Coronary Artery Disease

Habib Samady; Parham Eshtehardi; Michael C. McDaniel; Jin Suo; Saurabh S. Dhawan; Charles Maynard; Lucas H. Timmins; Arshed A. Quyyumi; Don P. Giddens

Background Experimental studies suggest that low wall shear stress (WSS) promotes plaque development and high WSS is associated with plaque destabilization. We hypothesized that low-WSS segments in patients with coronary artery disease develop plaque progression and high-WSS segments develop necrotic core progression with fibrous tissue regression. Methods and Results Twenty patients with coronary artery disease underwent baseline and 6-month radiofrequency intravascular ultrasound (virtual histology intravascular ultrasound) and computational fluid dynamics modeling for WSS calculation. For each virtual histology intravascular ultrasound segment (n=2249), changes in plaque area, virtual histology intravascular ultrasound–derived plaque composition, and remodeling were compared in low-, intermediate-, and high-WSS categories. Compared with intermediate-WSS segments, low-WSS segments developed progression of plaque area (P=0.027) and necrotic core (P<0.001), whereas high-WSS segments had progression of necrotic core (P<0.001) and dense calcium (P<0.001) and regression of fibrous (P<0.001) and fibrofatty (P<0.001) tissue. Compared with intermediate-WSS segments, low-WSS segments demonstrated greater reduction in vessel (P<0.001) and lumen area (P<0.001), and high-WSS segments demonstrated an increase in vessel (P<0.001) and lumen (P<0.001) area. These changes resulted in a trend toward more constrictive remodeling in low- compared with high-WSS segments (73% versus 30%; P=0.06) and more excessive expansive remodeling in high- compared with low-WSS segments (42% versus 15%; P=0.16). Conclusions Compared with intermediate-WSS coronary segments, low-WSS segments develop greater plaque and necrotic core progression and constrictive remodeling, and high-WSS segments develop greater necrotic core and calcium progression, regression of fibrous and fibrofatty tissue, and excessive expansive remodeling, suggestive of transformation to a more vulnerable phenotype. Clinical Trial Registration URL: http://www.clinicaltrials.gov. Unique identifier: NCT00576576.


American Journal of Physiology-heart and Circulatory Physiology | 2009

Partial carotid ligation is a model of acutely induced disturbed flow, leading to rapid endothelial dysfunction and atherosclerosis.

Douglas Nam; Chih-Wen Ni; Amir Rezvan; Jin Suo; Klaudia Budzyn; Alexander Llanos; David G. Harrison; Don P. Giddens; Hanjoong Jo

Atherosclerosis is closely associated with disturbed flow characterized by low and oscillatory shear stress, but studies directly linking disturbed flow to atherogenesis is lacking. The major reason for this has been a lack of an animal model in which disturbed flow can be acutely induced and cause atherosclerosis. Here, we characterize partial carotid ligation as a model of disturbed flow with characteristics of low and oscillatory wall shear stress. We also describe a method of isolating intimal RNA in sufficient quantity from mouse carotid arteries. Using this model and method, we found that partial ligation causes upregulation of proatherogenic genes, downregulation of antiatherogenic genes, endothelial dysfunction, and rapid atherosclerosis in 2 wk in a p47(phox)-dependent manner and advanced lesions by 4 wk. We found that partial ligation results in endothelial dysfunction, rapid atherosclerosis, and advanced lesion development in a physiologically relevant model of disturbed flow. It also allows for easy and rapid intimal RNA isolation. This novel model and method could be used for genome-wide studies to determine molecular mechanisms underlying flow-dependent regulation of vascular biology and diseases.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2006

Hemodynamic Shear Stresses in Mouse Aortas: Implications for Atherogenesis

Jin Suo; Dardo E. Ferrara; Dan Sorescu; Robert E. Guldberg; W. Robert Taylor; Don P. Giddens

Objective—The hemodynamic environment is a determinant of susceptibility to atherosclerosis in the vasculature. Although mouse models are commonly used in atherosclerosis studies, little is known about local variations in wall shear stress (WSS) in the mouse and whether the levels of WSS are comparable to those in humans. The objective of this study was to determine WSS values in the mouse aorta and to relate these to expression of gene products associated with atherosclerosis. Methods and Results—Using micro-CT and ultrasound methodologies we developed a computational fluid dynamics model of the mouse aorta and found values of WSS to be much larger than those for humans. We also used a quantum dot-based approach to study vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 expression on the aortic intima and demonstrated that increased expression for these molecules occurs where WSS was relatively low for the mouse. Conclusions—Despite large differences in WSS in the two species, the spatial distributions of atherogenic molecules in the mouse aorta are similar to atherosclerotic plaque localization found in human aortas. These results suggest that relative differences in WSS or in the direction of WSS, as opposed to the absolute magnitude, may be relevant determinants of flow-mediated inflammatory responses.


Journal of the American Heart Association | 2012

Association of coronary wall shear stress with atherosclerotic plaque burden, composition, and distribution in patients with coronary artery disease.

Parham Eshtehardi; Michael C. McDaniel; Jin Suo; Saurabh S. Dhawan; Lucas H. Timmins; Jose Binongo; Lucas Golub; Michel T. Corban; Aloke V. Finn; John N. Oshinski; Arshed A. Quyyumi; Don P. Giddens; Habib Samady

Background Extremes of wall shear stress (WSS) have been associated with plaque progression and transformation, which has raised interest in the clinical assessment of WSS. We hypothesized that calculated coronary WSS is predicted only partially by luminal geometry and that WSS is related to plaque composition. Methods and Results Twenty‐seven patients with coronary artery disease underwent virtual histology intravascular ultrasound and Doppler velocity measurement for computational fluid dynamics modeling for WSS calculation in each virtual histology intravascular ultrasound segment (N=3581 segments). We assessed the association of WSS with plaque burden and distribution and with plaque composition. WSS remained relatively constant across the lower 3 quartiles of plaque burden (P=0.08) but increased in the highest quartile of plaque burden (P<0.001). Segments distal to lesions or within bifurcations were more likely to have low WSS (P<0.001). However, the majority of segments distal to lesions (80%) and within bifurcations (89%) did not exhibit low WSS. After adjustment for plaque burden, there was a negative association between WSS and percent necrotic core and calcium. For every 10 dynes/cm2 increase in WSS, percent necrotic core decreased by 17% (P=0.01), and percent dense calcium decreased by 17% (P<0.001). There was no significant association between WSS and percent of fibrous or fibrofatty plaque components (P=NS). Conclusions In patients with coronary artery disease: (1) Luminal geometry predicts calculated WSS only partially, which suggests that detailed computational techniques must be used to calculate WSS. (2) Low WSS is associated with plaque necrotic core and calcium, independent of plaque burden, which suggests a link between WSS and coronary plaque phenotype. (J Am Heart Assoc. 2012;1:e002543 doi: 10.1161/JAHA.112.002543.)


Atherosclerosis | 2014

Combination of plaque burden, wall shear stress, and plaque phenotype has incremental value for prediction of coronary atherosclerotic plaque progression and vulnerability

Michel T. Corban; Parham Eshtehardi; Jin Suo; Michael C. McDaniel; Lucas H. Timmins; Emad Rassoul-Arzrumly; Charles Maynard; Girum Mekonnen; Spencer B. King; Arshed A. Quyyumi; Don P. Giddens; Habib Samady

AIMS Large plaque burden, certain phenotypes, and low wall shear stress (WSS) are associated with adverse outcomes and high WSS with development of plaque vulnerability. We aimed to investigate the incremental value of the combination of plaque burden, WSS and plaque phenotype for prediction of coronary atherosclerotic plaque progression and vulnerability. METHODS Twenty patients with CAD underwent baseline and 6-month follow-up coronary virtual histology-intravascular ultrasound (VH-IVUS) and computational fluid dynamics modeling for calculation of WSS. Low WSS was defined as <10 dynes/cm(2) and high WSS as ≥25 dynes/cm(2). Baseline plaque characteristics and WSS were related to plaque progression and vulnerability. RESULTS In 2249 VH-IVUS frames analyzed, coronary segments with both plaque burden >40% and low WSS had significantly greater change in plaque area at follow-up (+0.68 ± 1.05 mm(2)), compared to segments with plaque burden >40% without low WSS (-0.28 ± 1.32 mm(2)) or segments with low WSS and plaque burden ≤40% (+0.05 ± 0.71 mm(2)) (p = 0.047). Among plaque phenotypes, pathologic intimal thickening (PIT) had the greatest increase in necrotic core (NC) area (p = 0.06) and greatest decrease in fibro-fatty (FF) area (p < 0.0001). At follow-up, compared to segments with either plaque burden >60%, PIT, or high WSS, those with a combination of plaque burden >60%, PIT, and high WSS developed greater increase in NC area (p = 0.002), greater decrease in FF (p = 0.004) and fibrous areas (p < 0.0001), and higher frequency of expansive remodeling (p = 0.019). CONCLUSION Combination of plaque burden, WSS, and plaque phenotype has incremental value for prediction of coronary plaque progression and increased plaque vulnerability in patients with non-obstructive CAD.


Expert Review of Cardiovascular Therapy | 2010

Shear stress and plaque development

Saurabh S. Dhawan; Ravi Nanjundappa; Jonathan R Branch; W. Robert Taylor; Arshed A. Quyyumi; Hanjoong Jo; Michael C. McDaniel; Jin Suo; Don P. Giddens; Habib Samady

Although traditional cardiovascular risk factors ‘prime the soil’ for atherogenesis systemically, atherosclerosis primarily occurs in a site-specific manner with a predilection towards the inner wall of curvatures and outer wall of bifurcations with sparing of flow-dividers. Wall shear stress is a frictional force exerted parallel to the vessel wall that leads to alteration of the endothelial phenotype, endothelial cell signaling, gene and protein expression leading to a proinflammatory phenotype, reduced nitric oxide availability and disruption of the extracellular matrix, which in turn leads to plaque development. Clinical and experimental data are emerging that suggest the pathobiology associated with abnormal wall shear stress results in atherosclerotic plaque development and progression.


Small | 2013

Magnetic Targeting of Human Mesenchymal Stem Cells with Internalized Superparamagnetic Iron Oxide Nanoparticles

Natalia Landázuri; Sheng Tong; Jin Suo; Giji Joseph; Daiana Weiss; Diane Sutcliffe; Don P. Giddens; Gang Bao; W. Robert Taylor

Cell therapies offer exciting new opportunities for effectively treating many human diseases. However, delivery of therapeutic cells by intravenous injection, while convenient, relies on the relatively inefficient process of homing of cells to sites of injury. To address this limitation, a novel strategy has been developed to load cells with superparamagnetic iron oxide nanoparticles (SPIOs), and to attract them to specific sites within the body by applying an external magnetic field. The feasibility of this approach is demonstrated using human mesenchymal stem cells (hMSCs), which may have a significant potential for regenerative cell therapies due to their ease of isolation from autologous tissues, and their ability to differentiate into various lineages and modulate their paracrine activity in response to the microenvironment. The efficient loading of hMSCs with polyethylene glycol-coated SPIOs is achieved, and it is found that SPIOs are localized primarily in secondary lysosomes of hMSCs and are not toxic to the cells. Further, the key stem cell characteristics, including the immunophenotype of hMSCs and their ability to differentiate, are not altered by SPIO loading. Through both experimentation and mathematical modeling, it is shown that, under applied magnetic field gradients, SPIO-containing cells can be localized both in vitro and in vivo. The results suggest that, by loading SPIOs into hMSCs and applying appropriate magnetic field gradients, it is possible to target hMSCs to particular vascular networks.


American Journal of Physiology-heart and Circulatory Physiology | 2009

In vivo assessment of blood flow patterns in abdominal aorta of mice with MRI: implications for AAA localization.

Smbat Amirbekian; Robert Long; Michelle A. Consolini; Jin Suo; Nick J. Willett; Sam W. Fielden; Don P. Giddens; W. Robert Taylor; John N. Oshinski

Abdominal aortic aneurysms (AAA) localize in the infrarenal aorta in humans, while they are found in the suprarenal aorta in mouse models. It has been shown previously that humans experience a reversal of flow during early diastole in the infrarenal aorta during each cardiac cycle. This flow reversal causes oscillatory wall shear stress (OWSS) to be present in the infrarenal aorta of humans. OWSS has been linked to a variety of proatherogenic and proinflammatory factors. The presence of reverse flow in the mouse aorta is unknown. In this study we investigated blood flow in mice, using phase-contrast magnetic resonance (PCMR) imaging. We measured blood flow in the suprarenal and infrarenal abdominal aorta of 18 wild-type C57BL/6J mice and 15 apolipoprotein E (apoE)-/- mice. Although OWSS was not directly evaluated, results indicate that, unlike humans, there is no reversal of flow in the infrarenal aorta of wild-type or apoE-/- mice. Distensibility of the mouse aortic wall in both the suprarenal and infrarenal segments is higher than reported values for the human aorta. We conclude that normal mice do not experience the reverse flow in the infrarenal aorta that is observed in humans.


Journal of Visualized Experiments | 2010

A Model of Disturbed Flow-Induced Atherosclerosis in Mouse Carotid Artery by Partial Ligation and a Simple Method of RNA Isolation from Carotid Endothelium

Douglas Nam; Chih-Wen Ni; Amir Rezvan; Jin Suo; Klaudia Budzyn; Alexander Llanos; David G. Harrison; Don P. Giddens; Hanjoong Jo

Despite the well-known close association, direct evidence linking disturbed flow to atherogenesis has been lacking. We have recently used a modified version of carotid partial ligation methods to show that it acutely induces low and oscillatory flow conditions, two key characteristics of disturbed flow, in the mouse common carotid artery. Using this model, we have provided direct evidence that disturbed flow indeed leads to rapid and robust atherosclerosis development in Apolipoprotein E knockout mouse. We also developed a method of endothelial RNA preparation with high purity from the mouse carotid intima. Using this mouse model and method, we found that partial ligation causes endothelial dysfunction in a week, followed by robust and rapid atheroma formation in two weeks in a hyperlipidemic mouse model along with features of complex lesion formation such as intraplaque neovascularization by four weeks. This rapid in vivo model and the endothelial RNA preparation method could be used to determine molecular mechanisms underlying flow-dependent regulation of vascular biology and diseases. Also, it could be used to test various therapeutic interventions targeting endothelial dysfunction and atherosclerosis in considerably reduced study duration.


American Heart Journal | 2011

Localization of culprit lesions in coronary arteries of patients with ST-segment elevation myocardial infarctions: Relation to bifurcations and curvatures

Michael C. McDaniel; Erin M. Galbraith; Ahmad M. Jeroudi; Omar R. Kashlan; Parham Eshtehardi; Jin Suo; Saurabh S. Dhawan; Michele D. Voeltz; Chandan Devireddy; John N. Oshinski; David G. Harrison; Don P. Giddens; Habib Samady

BACKGROUND Although culprit lesions in ST-segment elevation myocardial infarction (STEMI) cluster in the proximal coronary arteries, their relationship to bifurcations and curvatures, where blood flow is disturbed, is unknown. We hypothesized that (a) culprit lesions localize to disturbed flow distal to bifurcations and curvatures and (b) the distribution of culprit lesions in the left (LCA) and right coronary arteries (RCA) and resulting infarct size are related to the location of bifurcations and curvatures. METHODS Emory Universitys contribution to the National Cardiovascular Data Registry was queried for STEMIs. Using quantitative coronary angiography, the distances from the vessel ostium, major bifurcations, and major curvatures to the culprit lesion were measured in 385 patients. RESULTS Culprit lesions were located within 20 mm of a bifurcation in 79% of patients and closer to the bifurcation in the LCA compared with the RCA (7.4 ± 7.3 vs 17.7 ± 14.8 mm, P < .0001). Of RCA culprit lesions, 45% were located within 20 mm of a major curvature. Compared with those in the RCA, culprit lesions in the LCA were located more proximally (24.4 ± 16.5 vs 44.7 ± 28.8 mm, P = .0003) and were associated with larger myocardial infarctions as assessed by peak creatine kinase-MB (208 ± 222 vs 140 ± 153 ng/dL, P = .001) and troponin I (59 ± 62 vs 40 ± 35 ng/dL, P = .0006) and with higher in-hospital mortality (5.2% vs 1.1%, P = .04). CONCLUSIONS In patients with STEMI, culprit lesions are frequently located immediately distal to bifurcations and in proximity to major curvatures where disturbed flow is known to occur. This supports the role of wall shear stress in the pathogenesis of STEMI.

Collaboration


Dive into the Jin Suo's collaboration.

Top Co-Authors

Avatar

Don P. Giddens

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge