Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jing-Bo Zhang is active.

Publication


Featured researches published by Jing-Bo Zhang.


Plant Biotechnology Journal | 2015

Host-induced gene silencing of an essential chitin synthase gene confers durable resistance to Fusarium head blight and seedling blight in wheat

Wei Cheng; Xiu-Shi Song; He-Ping Li; Le-Hui Cao; Ke Sun; Xiao-Li Qiu; Yu-Bin Xu; Peng Yang; Tao Huang; Jing-Bo Zhang; Bo Qu; Yu-Cai Liao

Fusarium head blight (FHB) and Fusarium seedling blight (FSB) of wheat, caused by Fusarium pathogens, are devastating diseases worldwide. We report the expression of RNA interference (RNAi) sequences derived from an essential Fusarium graminearum (Fg) virulence gene, chitin synthase (Chs) 3b, as a method to enhance resistance of wheat plants to fungal pathogens. Deletion of Chs3b was lethal to Fg; disruption of the other Chs gene family members generated knockout mutants with diverse impacts on Fg. Comparative expression analyses revealed that among the Chs gene family members, Chs3b had the highest expression levels during Fg colonization of wheat. Three hairpin RNAi constructs corresponding to the different regions of Chs3b were found to silence Chs3b in transgenic Fg strains. Co-expression of these three RNAi constructs in two independent elite wheat cultivar transgenic lines conferred high levels of stable, consistent resistance (combined type I and II resistance) to both FHB and FSB throughout the T3 to T5 generations. Confocal microscopy revealed profoundly restricted mycelia in Fg-infected transgenic wheat plants. Presence of the three specific short interfering RNAs in transgenic wheat plants was confirmed by Northern blotting, and these RNAs efficiently down-regulated Chs3b in the colonizing Fusarium pathogens on wheat seedlings and spikes. Our results demonstrate that host-induced gene silencing of an essential fungal chitin synthase gene is an effective strategy for enhancing resistance in crop plants under field test conditions.


Molecular Plant-microbe Interactions | 2008

Engineering Fusarium Head Blight Resistance in Wheat by Expression of a Fusion Protein Containing a Fusarium-Specific Antibody and an Antifungal Peptide

He-Ping Li; Jing-Bo Zhang; Run-Ping Shi; Tao Huang; Rainer Fischer; Yu-Cai Liao

Fusarium head blight (FHB) or scab of wheat is a devastating disease in warm and humid regions at wheat-flowering periods worldwide. Natural resistance against FHB pathogens is inadequate and the development of FHB-resistant wheat cultivars has been a challenge. Expression of pathogen-specific antibodies in plants has been proposed as a strategy for crop protection. In this study, an antibody fusion protein comprising a Fusarium-specific recombinant antibody derived from chicken and an antifungal peptide from Aspergillus giganteus was expressed in wheat as a method for protecting plants against FHB pathogens. Plants expressing the antibody fusion displayed a very significantly enhanced resistance in T2 and T3 generations upon single-floret inoculation with the macroconidia of Fusarium asiaticum, the predominant species causing FHB in China, indicating a type II resistance. Spraying inoculation further revealed an enhanced type I resistance in the transgenic wheat plants. Remarkably, more grains were produced in the transgenic plants than the nontransgenic controls. Our results demonstrated that the antibody fusion protein may be used as an effective tool for the protection of crops against FHB pathogens.


International Journal of Molecular Sciences | 2008

Development of a generic PCR detection of 3-acetyldeoxy-nivalenol-, 15-acetyldeoxynivalenol- and nivalenol-chemotypes of Fusarium graminearum Clade.

Jian-Hua Wang; He-Ping Li; Bo Qu; Jing-Bo Zhang; Tao Huang; Fang-Fang Chen; Yu-Cai Liao

Fusarium graminearum clade pathogens cause Fusarium head blight (FHB) or scab of wheat and other small cereal grains, producing different kinds of trichothecene mycotoxins that are detrimental to human and domestic animals. Type B trichothecene mycotoxins such as deoxynivalenol, 3-acetyldeoxynivalenol (3-AcDON), 15-acetyldeoxynivalenol (15-AcDON) and nivalenol (NIV) are the principal Fusarium mycotoxins reported in China, as well as in other countries. A genomic polymerase chain reaction (PCR) to predict chemotypes was developed based on the structural gene sequences of Tri13 genes involved in trichothecene mycotoxin biosynthesis pathways. A single pair of primers derived from the Tri13 genes detected a 583 bp fragment from 15-AcDON-chemotypes, a 644 bp fragment from 3-AcDON-chemotypes and an 859 bp fragment from NIV-producing strains. Fusarium strains from China, Nepal, USA and Europe were identified by this method, revealing their mycotoxin chemotypes identical to that obtained by chemical analyses of HPLC or GC/MS and other PCR assays. The mycotoxin chemotype-specific fragments were amplified from a highly variable region located in Tri13 genes with three deletions for 15-AcDON-chemotypes, two deletions for 3-AcDON-chemotypes and no deletion for NIV-producers. This PCR assay generated a single amplicon and thus should be more reliable than other PCR-based assays that showed the absence or presence of a PCR fragment since these assays may generate false-negative results. The results with strains from several different countries as well as from different hosts further indicated that this method should be globally applicable. This is a rapid, reliable and cost-effective method for the identification of type B trichothecene mycotoxin chemotypes in Fusarium species and food safety controls.


Toxins | 2011

Population Structure and Genetic Diversity of the Fusarium graminearum Species Complex

Jian-Hua Wang; Mbacke Ndoye; Jing-Bo Zhang; He-Ping Li; Yu-Cai Liao

The Fusarium graminearum species complex (Fg complex) consists of phylogenetically distinct species some of which cannot be discriminated based on their morphology. Their chemotypes and geographic distributions are dramatically different, and these highlight the challenges that Fusarium head blight (FHB) poses to plant disease specialists and plant breeders, thereby requiring that quarantine officials employ molecular diagnostic tools in their active surveillance programs. Molecular marker technologies play essential roles in species identification of the Fg complex, and they are being used widely to assess the genetic diversity of the clade. The utility, applicability and limitations of molecular methods for assessing the population structure and genetic diversity within the Fg complex are discussed with suitable examples. Knowledge gained from these studies will provide a baseline for monitoring changes in FHB pathogen diversity and mycotoxin potential over time, both of which are critical to the ultimate control and elimination of this economically devastating disease.


Fungal Genetics and Biology | 2010

Disruption of the chitin synthase gene CHS1 from Fusarium asiaticum results in an altered structure of cell walls and reduced virulence

Yu-Bin Xu; He-Ping Li; Jing-Bo Zhang; Bo Song; Fang-Fang Chen; Xiao-Jun Duan; Huai-Qian Xu; Yu-Cai Liao

Natural resistance of wheat against Fusarium head blight (FHB) is inadequate and new strategies for controlling the disease are required. Chitin synthases that catalyze chitin biosynthesis would be an ideal target for antifungal agents. In this study, a class I chitin synthase gene (CHS1) from Fusarium asiaticum, the predominant species of FHB pathogens on wheat in China, was functionally disrupted via Agrobacterium tumefaciens-mediated transformation. Specific disruption of the CHS1 gene resulted in a 58% reduction of chitin synthase activity, accompanied by decreases of 35% in chitin content, 22% in conidiation, and 16% in macroconidium length. The Deltachs1 mutant strain had a growth rate comparable to that of the wild-type on PDA medium but had a 35% increase in the number of nuclear cellulae and exhibited a remarkably increased sensitivity to osmosis stresses. Electron microscopy revealed substantial changes occurring in cell wall structures of the macroconidium, ascospore, and mycelium, with the most profound changes in the mycelium. Furthermore, the Deltachs1 mutant displayed significantly reduced pathogenicity on wheat spikes and seedlings. Re-introduction of a functional CHS1 gene into the Deltachs1 mutant strain restored the wild-type phenotype. These results reveal an important in vivo role played by a CHS1 gene in a FHB pathogen whose mycelial chitin could serve as a target for controlling the disease.


PLOS ONE | 2015

Antagonistic mechanism of iturin A and plipastatin A from Bacillus amyloliquefaciens S76-3 from wheat spikes against Fusarium graminearum.

An-Dong Gong; He-Ping Li; Qing-Song Yuan; Xiu-Shi Song; Wei Yao; Wei-Jie He; Jing-Bo Zhang; Yu-Cai Liao

Controlling toxigenic Fusarium graminearum (FG) is challenging. A bacterial strain (S76-3, identified as Bacillus amyloliquefaciens) that was isolated from diseased wheat spikes in the field displayed strong antifungal activity against FG. Reverse-phase high performance liquid chromatography and electrospray ionization mass spectrometry analyses revealed that S76-3 produced three classes of cyclic lipopeptides including iturin, plipastatin and surfactin. Each class consisted of several different molecules. The iturin and plipastatin fractions strongly inhibited FG; the surfactin fractions did not. The most abundant compound that had antagonistic activity from the iturin fraction was iturin A (m/z 1043.35); the most abundant active compound from the plipastatin fraction was plipastatin A (m/z 1463.90). These compounds were analyzed with collision-induced dissociation mass spectrometry. The two purified compounds displayed strong fungicidal activity, completely killing conidial spores at the minimal inhibitory concentration range of 50 µg/ml (iturin A) and 100 µg/ml (plipastatin A). Optical and fluorescence microscopy analyses revealed severe morphological changes in conidia and substantial distortions in FG hyphae treated with iturin A or plipastatin A. Iturin A caused leakage and/or inactivation of FG cellular contents and plipastatin A caused vacuolation. Time-lapse imaging of dynamic antagonistic processes illustrated that iturin A caused distortion and conglobation along hyphae and inhibited branch formation and growth, while plipastatin A caused conglobation in young hyphae and branch tips. Transmission electron microscopy analyses demonstrated that the cell walls of conidia and hyphae of iturin A and plipastatin A treated FG had large gaps and that their plasma membranes were severely damaged and separated from cell walls.


Fungal Genetics and Biology | 2014

Trehalose 6-phosphate phosphatase is required for development, virulence and mycotoxin biosynthesis apart from trehalose biosynthesis in Fusarium graminearum

Xiu-Shi Song; He-Ping Li; Jing-Bo Zhang; Bo Song; Tao Huang; Xiao-Min Du; An-Dong Gong; Yi-Ke Liu; Yan-Ni Feng; Rebecca S. Agboola; Yu-Cai Liao

Trehalose 6-phosphate synthase (TPS1) and trehalose 6-phosphate phosphatase (TPS2) are required for trehalose biosynthesis in yeast and filamentous fungi, including Fusarium graminearum. Three null mutants Δtps1, Δtps2 and Δtps1-Δtps2, each carrying either a single deletion of TPS1 or TPS2 or a double deletion of TPS1-TPS2, were generated from a toxigenic F. graminearum strain and were not able to synthesize trehalose. In contrast to its reported function in yeasts and filamentous fungi, TPS1 appeared dispensable for development and virulence. However, deletion of TPS2 abolished sporulation and sexual reproduction; it also altered cell polarity and ultrastructure of the cell wall in association with reduced chitin biosynthesis. The cell polarity alteration was exhibited as reduced apical growth and increased lateral growth and branching with increased hyphal and cell wall widths. Moreover, the TPS2-deficient strain displayed abnormal septum development and nucleus distribution in its conidia and vegetative hyphae. The Δtps2 mutant also had 62% lower mycelial growth on potato dextrose agar and 99% lower virulence on wheat compared with the wild-type. The Δtps1, Δtps2 and Δtps1-Δtps2 mutants synthesized over 3.08-, 7.09- and 2.47-fold less mycotoxins, respectively, on rice culture compared with the wild-type. Comparative transcriptome analysis revealed that the Δtps1, Δtps2 and Δtps1-Δtps2 mutants had 486, 1885 and 146 genotype-specific genes, respectively, with significantly changed expression profiles compared with the wild-type. Further dissection of this pathway will provide new insights into regulation of fungal development, virulence and trichothecene biosynthesis.


Analytica Chimica Acta | 2015

An affinity improved single-chain antibody from phage display of a library derived from monoclonal antibodies detects fumonisins by immunoassay.

Zu-Quan Hu; He-Ping Li; Ping Wu; Ya-Bo Li; Zhu-Qing Zhou; Jing-Bo Zhang; Jin-Long Liu; Yu-Cai Liao

Fumonisin B analogs, particularly FB1, FB2, and FB3, are major mycotoxins found in cereals. Single-chain fragment variable (scFv) antibodies represent a promising alternative immunoassay system. A phage-displayed antibody library derived from four monoclonal antibodies (mAbs) generated against FB1 was used to screen high binding affinity scFv antibodies; the best candidate was designated H2. Surface plasmon resonance measurements confirmed that the H2 scFv displayed a 82-fold higher binding affinity than its parent mAb. Direct competitive enzyme-linked immunosorbent assay demonstrated that the H2 antibody could competitively bind to free FB1, FB2, and FB3, with an IC50 of 0.11, 0.04, and 0.10 μM, respectively; it had no cross-reactivity to deoxynivalenol, nivalenol and aflatoxin. Validation assays with naturally contaminated samples revealed a linear relationship between the H2 antibody-based assay results and chemical analysis results, that could be expressed as y=1.7072x+5.5606 (R(2)=0.8883). Homology modeling of H2 revealed a favorable binding structure highly complementary to the three fumonisins. Molecular docking analyses suggested that the preferential binding of the H2 scFv to FB2 was due to the presence of a hydrogen radical in its R1 position, leading to a proper electrostatic matching and hydrophobic interaction. The H2 scFv antibody can be used for the rapid, accurate, and specific detection of fumonisin contamination in agricultural samples.


Analytica Chimica Acta | 2013

A phage-displayed chicken single-chain antibody fused to alkaline phosphatase detects Fusarium pathogens and their presence in cereal grains.

Zu-Quan Hu; He-Ping Li; Jing-Bo Zhang; Tao Huang; Jin-Long Liu; Sheng Xue; Aibo Wu; Yu-Cai Liao

Fusarium and its poisonous mycotoxins are distributed worldwide and are of particular interest in agriculture and food safety. A simple analytical method to detect pathogens is essential for forecasting diseases and controlling mycotoxins. This article describes a proposed method for convenient and sensitive detection of Fusarium pathogens that uses the fusion of single-chain variable fragment (scFv) and alkaline phosphatase (AP). A highly reactive scFv antibody specific to soluble cell wall-bound proteins (SCWPs) of F. verticillioides was selected from an immunized chicken phagemid library by phage display. The antibody was verified to bind on the surface of ungerminated conidiospores and mycelia of F. verticillioides. The scFv-AP fusion was constructed, and soluble expression in bacteria was confirmed. Both the antibody properties and enzymatic activity were retained, and the antigen-binding capacity of the fusion was enhanced by the addition of a linker. Surface plasmon resonance measurements confirmed that the fusion displayed 4-fold higher affinity compared with the fusions parental scFv antibody. Immunoblot analyses showed that the fusion had good binding capacity to the components from SCWPs of F. verticillioides, and enzyme-linked immunosorbent assays revealed that the detection limit of the fungus was below 10(-2) μg mL(-1), superior to the scFv antibody. The fusion protein was able to detect fungal concentrations as low as 10(-3) mg g(-1) of maize grains in both naturally and artificially contaminated samples. Thus, the fusion can be applied in rapid and simple diagnosis of Fusarium contamination in field and stored grain or in food.


Fungal Genetics and Biology | 2013

Type II myosin gene in Fusarium graminearum is required for septation, development, mycotoxin biosynthesis and pathogenicity.

Bo Song; He-Ping Li; Jing-Bo Zhang; Jian-Hua Wang; An-Dong Gong; Xiu-Shi Song; Tai Chen; Yu-Cai Liao

Type II myosin is required for cytokinesis/septation in yeast and filamentous fungi, including Fusarium graminearum, a prevalent cause of Fusarium head blight in China. A type II myosin gene from the Chinese F. graminearum strain 5035, isolated from infected wheat spikes, was identified by screening a mutant library generated by restriction enzyme-mediated integration. Disruption of the Myo2 gene reduced mycelial growth by 50% and conidiation by 76-fold, and abolished sexual reproduction on wheat kernels. The Δmyo2 mutants also had a 97% decrease in their pathogenicity on wheat, and mycotoxin production fell to just 3.4% of the normal level. The distribution of nuclei and septa was abnormal in the mutants, and the septal ultrastructure appeared disorganized. Time-lapse imaging of septation provided direct evidence that Myo2 is required for septum initiation and formation, and revealed the dynamic behavior of GFP-tagged Myo2 during hyphal and macroconidia development, particularly in the delimiting septum of phialides and macroconidial spores. Microarray analysis identified many genes with altered expression profiles in the Δmyo2 mutant, indicating that Myo2 is required for several F. graminearum developmental processes and biological activities.

Collaboration


Dive into the Jing-Bo Zhang's collaboration.

Top Co-Authors

Avatar

Yu-Cai Liao

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

He-Ping Li

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

An-Dong Gong

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Tao Huang

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Bo Qu

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jin-Long Liu

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Zu-Quan Hu

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jian-Hua Wang

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Sheng Xue

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Aibo Wu

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge