Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jing Duan is active.

Publication


Featured researches published by Jing Duan.


Fourth Seminar on Novel Optoelectronic Detection Technology and Application | 2018

The design of visible system for improving the measurement accuracy of imaging points

Qiusha Shan; Gang Li; Luan Zeng; Kai Liu; Peipei Yan; Jing Duan; Kai Jiang

It has a widely applications in robot vision and 3D measurement for binocular stereoscopic measurement technology. And the measure precision is an very important factor, especially in 3D coordination measurement, high measurement accuracy is more stringent to the distortion of the optical system. In order to improving the measurement accuracy of imaging points, to reducing the distortion of the imaging points, the optical system must be satisfied the requirement of extra low distortion value less than 0.1%, a transmission visible optical lens was design, which has characteristic of telecentric beam path in image space, adopted the imaging model of binocular stereo vision, and imaged the drone at the finity distance. The optical system was adopted complex double Gauss structure, and put the pupil stop on the focal plane of the latter groups, maked the system exit pupil on the infinity distance, and realized telecentric beam path in image space. The system mainly optical parameter as follows: the system spectrum rangement is visible light wave band, the optical effective length is f ’=30mm, the relative aperture is 1/3, and the fields of view is 21°. The final design results show that the RMS value of the spread spots of the optical lens in the maximum fields of view is 2.3μm, which is less than one pixel(3.45μm); the distortion value is less than 0.1%, the system has the advantage of extra low distortion value and avoids the latter image distortion correction; the proposed modulation transfer function of the optical lens is 0.58(@145 lp/mm), the imaging quality of the system is closed to the diffraction limited; the system has simply structure, and can satisfies the requirements of the optical indexes. Ultimately, based on the imaging model of binocular stereo vision was achieved to measuring the drone at the finity distance.


Fourth Seminar on Novel Optoelectronic Detection Technology and Application | 2018

Design of a long focal length mid-wavelength infrared optical system

Kai Liu; Qiusha Shan; Kai Jiang; Peipei Yan; Jing Duan; Zhanpeng Zhang

Based on a 640×512 cooled staring focal plane array (FPA) detector, pixel size 15μm×15μm, a long focal length mid-wavelength infrared optical system was designed. In this paper, the working wavelength is 3μm~5μm, the temperature range is -30°C~+50°C, this system can realize 1000mm focal length, the F-number is 4, the full field of view is 0.70°, satisfy 100% cold shield efficiency. A re-imaging refractive system was adopted in this designed optical system consists of a main objective group and a projection group. First of all, the structural selection and the initial parameter calculation were introduced. Secondly, on the basis of variety of the temperature, a focusing len was presented in this system to adjust to produce a clear image. Last but not the least, to improve image quality and environment adaptability, the analysis of temperature change and ghost image were described particularly. The design results prove that at the spatial frequency of 33 lp/mm, the axis MTF of the optical system is greater than 0.35, the system can offer a high resolution and excellent images, and it has the advantages of good adaptability, simple structure, easy to adjust, and high transmittance.


Fourth Seminar on Novel Optoelectronic Detection Technology and Application | 2018

Optimal design of a high accuracy photoelectric auto-collimator based on position sensitive detector

Peipei Yan; Yong-qing Yang; Wenji She; Kai Liu; Kai Jiang; Jing Duan; Qiusha Shan

A kind of high accuracy Photo-electric auto-collimator based on PSD was designed. The integral structure composed of light source, optical lens group, Position Sensitive Detector (PSD) sensor, and its hardware and software processing system constituted. Telephoto objective optical type is chosen during the designing process, which effectively reduces the length, weight and volume of the optical system, as well as develops simulation-based design and analysis of the auto-collimator optical system. The technical indicators of auto-collimator presented by this paper are: measuring resolution less than 0.05″; a field of view is 2ω=0.4° × 0.4°; measuring range is ±5′; error of whole range measurement is less than 0.2″. Measuring distance is 10m, which are applicable to minor-angle precise measuring environment. Aberration analysis indicates that the MTF close to the diffraction limit, the spot in the spot diagram is much smaller than the Airy disk. The total length of the telephoto lens is only 450mm by the design of the optical machine structure optimization. The autocollimator’s dimension get compact obviously under the condition of the image quality is guaranteed.


ieee international conference on photonics | 2017

Optimal design of an earth observation optical system with dual spectral and high resolution

Peipei Yan; Kai Jiang; Kai Liu; Jing Duan; Qiusha Shan

With the increasing demand of the high-resolution remote sensing images by military and civilians, Countries around the world are optimistic about the prospect of higher resolution remote sensing images. Moreover, design a visible/infrared integrative optic system has important value in earth observation. Because visible system can’t identify camouflage and recon at night, so we should associate visible camera with infrared camera. An earth observation optical system with dual spectral and high resolution is designed. The paper mainly researches on the integrative design of visible and infrared optic system, which makes the system lighter and smaller, and achieves one satellite with two uses. The working waveband of the system covers visible, middle infrared (3-5um). Dual waveband clear imaging is achieved with dispersive RC system. The focal length of visible system is 3056mm, F/# is 10.91. And the focal length of middle infrared system is 1120mm, F/# is 4. In order to suppress the middle infrared thermal radiation and stray light, the second imaging system is achieved and the narcissus phenomenon is analyzed. The system characteristic is that the structure is simple. And the especial requirements of the Modulation Transfer Function (MTF), spot, energy concentration, and distortion etc. are all satisfied.


ieee international conference on photonics | 2017

Athermalization of infrared dual field optical system based on wavefront coding

Kai Jiang; Bo Jiang; Kai Liu; Peipei Yan; Jing Duan; Qiusha Shan

Wavefront coding is a technology which combination of the optical design and digital image processing. By inserting a phase mask closed to the pupil plane of the optical system,the wavefront of the system is re-modulated. And the depth of focus is extended consequently. In reality the idea is same as the athermalization theory of infrared optical system. In this paper, an uncooled infrared dual field optical system with effective focal as 38mm/19mm, F number as 1.2 of both focal length, operating wavelength varying from 8μm to 12μm was designed. A cubic phase mask was used at the pupil plane to re-modulate the wavefront. Then the performance of the infrared system was simulated with CODEV as the environment temperature varying from -40℃ to 60℃. MTF curve of the optical system with phase mask are compared with the outcome before using phase mask. The result show that wavefront coding technology can make the system not sensitive to thermal defocus, and then realize the athermal design of the infrared optical system.


ieee international conference on photonics | 2017

Design of a common-aperture VIS/LWIR imaging optical system with muti-field of view

Jing Duan; Kai Liu; Gang Li; Peipei Yan; Qiusha Shan; Kai Jiang

In order to achieve the multi-band and multi-field of view imaging for target and to meet the needs of target detection for large amount of information, a common-aperture visible light/long-wave infrared(VIS/LWIR) imaging optical system with muti-field of view was designed. In this paper, the aperture is 400mm, the working wavelength is 500~700nm and 7.5~10μm, the temperature range is -15℃~+50℃, this system can realize 1500mm and 3000mm dual focal length(VIS), the full field of view of short focal length is 1.16° and long focal length is 0.58° respectively, and realize 1400mm focal length(LWIR) and the full field of view of 0.54°, satisfy 100% cold shield efficiency. A re-imaging system was adopted in this designed optical system consists of main optics, VIS projection components and LMIR projection components. First of all, the structural selection and the initial parameter calculation were introduced in detail. Secondly, to improve image quality and environment adaptability, the analysis of temperature change was described particularly and the structural design requirements were put forward according to the analysis of the data. The design results proved that at the spatial frequency of 50 lp/mm, the axis MTF of the VIS system is greater than 0.48, the MTF of the LWIR system approaches the diffraction limit, the system can offer a high resolution and excellent images in whole range of the focal length, and it has the advantages of good adaptability, compact structure and small size, the results satisfy the design requirement.


Advanced Optical Design and Manufacturing Technology and Astronomical Telescopes and Instrumentation | 2016

Design of a mid-wavelength infrared dual field of view zoom system

Jing Duan; Gang Li; Kai Jiang; Kai Liu; Peipei Yan; Qiusha Shan

In order to effectively improve the target detection and recognition ability of IR imagers, based on a 320×256 cooled staring focal plane array(FPA) detector, pixel size 30μm×30μm, a mid-wavelength infrared dual field of view zoom system was designed. In this paper, the working wavelength is 3μm~5μm, the temperature range is -40°C~+50°C, this system can realize 200mm and 400mm dual focal length, the F-number is 2, the full field of view of short focal length is 3.44° and long focal length is 1.72° respectively, satisfy 100% cold shield efficiency. A re-imaging refractive system was adopted in this designed optical system consists of main optics and projection components. First of all, the structural selection and the initial parameter calculation were introduced in detail. Secondly, on the basis of variety of the distance and temperature, a focusing lens was presented in this system to adjust to produce a clear image. Last but not the least, to improve image quality and environment adaptability, the analysis of temperature change and narcissus effect were described particularly. The design results prove that at the spatial frequency of 17 lp/mm, the MTF of the optical system is greater than 0.5(the axis MTF of the optical is greater than 0.6), the system can offer a high resolution and excellent images in whole range of the focal length, and it has the advantages of good adaptability, compact structure, high optical transmission and small size.


Advanced Optical Design and Manufacturing Technology and Astronomical Telescopes and Instrumentation | 2016

Resolution allocation and budget of the Lyman-α ultraviolet telescope

Jiang Kai; Bo Jiang; Kai Liu; Peipei Yan; Jing Duan; Qiusha Shan

As a high-resolution imaging instrument, angular resolution is the most important index of Lyman-α ultraviolet telescope. In this paper a new allocation and budget method is introduced. An resolution error allocation of surface roughness, figure error and alignment error was developed early in the program. And the allocation was used to guide the design. Though testing the surface roughness and figure error in visible light, the variation of diffraction encircled energy can be obtained by non-sequence model and Zernike coefficients brought into optical design software. The numerical results show that the effective RMS surface roughness of primary and secondary mirrors are 0.49nm and 0.40nm in the spatial frequency from 1/D (D is the diameter of the mirror) to 1/λ (λ is an incident wavelength). And the effects of the surface roughness are both less than 0.1″. The figure error of the primary and secondary mirrors are 0.009λ and 0.007λ (Λλ=632.8nm). The resolution errors which were brought by the figure error are 0.33″ and 0.16″. Then the effect of alignment error on angular resolution was gotten by testing visual resolution. Finally the angular resolution in ultraviolet band can be calculated. The focal length of Lyman-α ultraviolet telescope is 2000mm and the pixel size of detector is 14μm. So the pixel resolution is 1.4″. Experimental results show that the angular resolution of Lyman-α ultraviolet telescope is 0.59″, which is approached to the estimate and meet the requirement.


Advanced Optical Design and Manufacturing Technology and Astronomical Telescopes and Instrumentation | 2016

The modular design of large-aperture zoom system

Kai Liu; Kai Jiang; Peipei Yan; Qiusha Shan; Jing Duan; Gang Li

According to the large aperture, long focal length zoom system design, the structure of the optical system based on the modular concept is proposed. The structure is constituted of an afocal compression telescope and a zoom system. The parts of each other are individually designed. The aberrations of them are independently. Because of this, the alignment of the system and the difficulty of test are greatly reduced. It is easily replaced by changing the zoom system parts, which can achieve other different focal length and ratio. Using afocal compression telescope greatly reduces the radial aperture of the zoom group, simplifies the system structure and reduces the cost. Meanwhile, the variable stop is placed in the vicinity of the primary mirror. It is instead of the zoom system used in floating variable stop. In addition, the problem about large aperture zoom system pupil matching is solved perfectly. In this article, four methods of pupil matching are given and the advantages and disadvantages of them are analyzed. Using this optical structure, a zoom system is designed, which is working in the visible wavelength band with variable focal length between 900mm and 4500mm, 500mm maximum aperture. The axial dimension of the system is less than 650mm. The maximum diameter of zoom system parts is less than 40 mm. Moreover, the distances of the zoom group and compensating group are all less than 60 mm. Besides, the motion curves of each other are given in the article. The Modulation Transfer Function (MTF) values of the system are greater than 0.3 at 48lp/mm across different focal length and field pointing on the axis. The design results show that the imaging quality is excellent, the structure is compact, and the alignment and test are easy. The imaging requirements of zoom system are all satisfied.


Advanced Optical Design and Manufacturing Technology and Astronomical Telescopes and Instrumentation | 2016

Optimal design of a space target acquisition optical system with small F-number

Peipei Yan; Wenji She; Kai Liu; Jing Duan; Kai Jiang; Qiusha Shan

A kind of space target acquisition optical system with small F-number was designed. The system had a working wavelength range of 0.45~0.85μm, an effective focal length of 240 mm, a field of view is 2ω=3°, and an F-Number of F/2. The system characteristic is that the structure is simple. And the especial requirements of the spot, energy concentration, distortion and lateral color etc. are all satisfied. The primary and secondary mirrors are all spheres, so the difficulty and cost of machining are reduced. Moreover, the temperature characteristic of the system is analyzed. The temperature request is satisfied.

Collaboration


Dive into the Jing Duan's collaboration.

Top Co-Authors

Avatar

Xiaoguo Deng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yu Zhang

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge