Jing-Fei Jiang
Tsinghua University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jing-Fei Jiang.
Scientific Reports | 2017
Xiao-Jin Yan; Xuan Yu; Xin-Pei Wang; Jing-Fei Jiang; Zhi-Yi Yuan; Xi Lu; Fan Lei; Dongming Xing
After being studied for approximately a century, berberine (BBR) has been found to act on various targets and pathways. A great challenge in the pharmacological analysis of BBR at present is to identify which target(s) plays a decisive role. In the study described herein, a rescue experiment was designed to show the important role of mitochondria in BBR activity. A toxic dose of BBR was applied to inhibit cell proliferation and mitochondrial activity, then α-ketobutyrate (AKB), an analogue of pyruvate that serves only as an electron receptor of NADH, was proven to partially restore cell proliferation. However, mitochondrial morphology damage and TCA cycle suppression were not recovered by AKB. As the AKB just help to regenerate NAD+, which is make up for part function of mitochondrial, the recovered cell proliferation stands for the contribution of mitochondria to the activity of BBR. Our results also indicate that BBR suppresses tumour growth and reduces energy charge and mitochondrial DNA (mtDNA) copy number in a HepG2 xenograft model. In summary, our study suggests that mitochondria play an important role in BBR activity regarding tumour cell proliferation and metabolism.
Chinese Journal of Natural Medicines | 2016
Xi Lu; Zhi-Yi Yuan; Xiao-Jin Yan; Fan Lei; Jing-Fei Jiang; Xuan Yu; Xiu-Wei Yang; Dongming Xing; Li-Jun Du
Angelica dahurica (A. dahurica) is a traditional Chinese medicinal plant being used in clinical practice. The present study demonstrated that A. dahurica could reduce white-fat weight in high-fat-diet hyperlipidemic mice, decrease total cholesterol and triglyceride concentrations in the livers of both high-fat-diet and Triton WR1339 induced hyperlipidemic mice, and enhance the total hepatic lipase activities of them. These findings were further supported by the results derived from the experiments with HepG2 cells in vitro. In addition, the proteins related to lipids metabolism were investigated using LC-MS/MS, indicating that genes of lipid metabolism and lipid transport were regulated by A. dhurica. The results from LC-MS/MS were further conformed by Western blot and real time PCR assays. A. dahurica could down-regulate the expression of catalase (CAT) and sterol carrier protein2 (SCP2) and up-regulate the expression of lipid metabolism related genes-lipase member C (LIPC) and peroxisome proliferator-activated receptor gamma (PPARγ). In the Triton WR1339 mouse liver and HepG2 cells in vitro, A. dahurica was able to increase the expression of LIPC and PPARγ, confirming the results from in vivo experiments. Imperatorin showed the same activity as A. dahurica, suggesting it was one of the major active ingredients of the herb. In conclusion, our work represented a first investigation demonstrating that A. dahurica was able to regulate lipid metabolism and could be developed as a novel approach to fighting against fatty liver and obesity.
Scientific Reports | 2017
Xin-Pei Wang; Xuan Yu; Xiao-Jin Yan; Fan Lei; Yu-Shuang Chai; Jing-Fei Jiang; Zhi-Yi Yuan; Dongming Xing; Lijun Du
Transient Receptor Potential Melastatin-8 (TRPM8) reportedly plays a fundamental role in a variety of processes including cold sensation, thermoregulation, pain transduction and tumorigenesis. However, the role of TRPM8 in inflammation under cold conditions is not well known. Since cooling allows the convergence of primary injury and injury-induced inflammation, we hypothesized that the mechanism of the protective effects of cooling might be related to TRPM8. We therefore investigated the involvement of TRPM8 activation in the regulation of inflammatory cytokines. The results showed that TRPM8 expression in the mouse hypothalamus was upregulated when the ambient temperature decreased; simultaneously, tumor necrosis factor-alpha (TNFα) was downregulated. The inhibitory effect of TRPM8 on TNFα was mediated by nuclear factor kappa B (NFκB). Specifically, cold stress stimulated the expression of TRPM8, which promoted the interaction of TRPM8 and NFκB, thereby suppressing NFκB nuclear localization. This suppression consequently led to the inhibition of TNFα gene transcription. The present data suggest a possible theoretical foundation for the anti-inflammatory role of TRPM8 activation, providing an experimental basis that could contribute to the advancement of cooling therapy for trauma patients.
Chinese Journal of Natural Medicines | 2016
Xiao-Jin Yan; Yu-Shuang Chai; Zhi-Yi Yuan; Xin-Pei Wang; Jing-Fei Jiang; Fan Lei; Dongming Xing; Li-Jun Du
Brazilein is reported to have immunosuppressive effect on cardiovascular and cerebral-vascular diseases. The essential roles of innate immunity in cerebral ischemia are increasingly identified, but no studies concerning the influence of brazilein on the innate immunity receptors have been reported. The present study was designed to investigate the regulation of NOD2 (Nucleotide-binding oligomerization domain-containing protein 2) by brazilein for its protection of neuron in cerebral ischemia in vivo and oxygen-glucose deprivation in vitro. The results showed that brazilein could reverse the elevated expression of NOD2 and TNFα (tumor necrosis factor alpha) elicited by cerebral ischemia and reperfusion. This reduction could also be detected in normal mice and C17.2 cells, indicating that this suppressive effect of brazilein was correlated with NOD2. The results from GFP reporter plasmid assay suggested brazilein inhibited NOD2 gene transcription. In conclusion, brazilein could attenuate NOD2 and TNFα expression in cerebral ischemia and NOD2 may be one possible target of brazilein for its immune suppressive effect in neuro-inflammation.
PLOS ONE | 2014
Shuang Zhao; Xin-Pei Wang; Jing-Fei Jiang; Yu-Shuang Chai; Yu Tian; Tian-Shi Feng; Yi Ding; Jing Huang; Fan Lei; Dongming Xing; Lijun Du
Brazilein, a natural small molecule, shows a variety of pharmacological activities, especially on nervous system and immune system. As a potential multifunctional drug, we studied the distribution and the transport behavior and metabolic behavior of brazilein in vivo and in vitro. Brazilein was found to be able to distribute in the mouse brain and transport into neural cells. A metabolite was found in the brain and in the cells. Positive and negative mode-MS/MS and Q-TOF were used to identify the metabolite. MS/MS fragmentation mechanisms showed the methylation occurred at the10-hydroxyl of brazilein (10-O-methylbrazilein). Further, catechol-O- methyltransferase (COMT) was confirmed as a crucial enzyme correlated with the methylated metabolite generation by molecular docking and pharmacological experiment.
Chinese Journal of Natural Medicines | 2017
Xuan Yu; Xin-Pei Wang; Fan Lei; Jing-Fei Jiang; Jun Li; Dongming Xing; Li-Jun Du
Pomegranate leaf (PGL) has a definite role in regulating lipid metabolism. However, pharmacokinetic results show the main active ingredient, ellagic acid, in PGL has lower oral bioavailability, suggesting that the lipid-lowering effect of PGL may act through inhibiting lipid absorption in the small intestine. Our results demonstrated that pomegranate leaf and its main active ingredients (i.e., ellagic acid, gallic acid, pyrogallic acid and tannic acid) were capable of inhibiting pancreatic lipase activity in vitro. In computational molecular docking, the four ingredients had good affinity for pancreatic lipase. Acute lipid overload experiments showed that a large dosage of PGL significantly reduced serum total cholesterol (TG) and triglycerides (TC) levels in addition to inhibiting intestinal lipase activity, which demonstrated that PGL could inhibit lipase activity and reduce the absorption of lipids. We also found that PGL could reverse the reduced tight-junction protein expression due to intestinal lipid overload, promote Occludin and Claudin4 expression in the small intestine, and enhance the intestinal mucosal barrier. In conclusion, we demonstrated that PGL can inhibit lipid absorption and reduce blood TG and TC by targeting pancreatic lipase, promoting tight-junction protein expression and thereby preventing intestinal mucosa damage from an overload of lipids in the intestine.
Chinese Journal of Natural Medicines | 2017
Jing-Fei Jiang; Fan Lei; Zhi-Yi Yuan; Yu-Gang Wang; Xin-Pei Wang; Xiao-Jin Yan; Xuan Yu; Dongming Xing; Li-Jun Du
Heat stress can stimulate an increase in body temperature, which is correlated with increased expression of heat shock protein 70 (HSP70) and tumor necrosis factor α (TNFα). The exact mechanism underlying the HSP70 and TNFα induction is unclear. Berberine (BBR) can significantly inhibit the temperature rise caused by heat stress, but the mechanism responsible for the BBR effect on HSP70 and TNFα signaling has not been investigated. The aim of the present study was to explore the relationship between the expression of HSP70 and TNFα and the effects of BBR under heat conditions, using in vivo and in vitro models. The expression levels of HSP70 and TNFα were determined using RT-PCR and Western blotting analyses. The results showed that the levels of HSP70 and TNFα were up-regulated under heat conditions (40 °C). HSP70 acted as a chaperone to maintain TNFα homeostasis with rising the temperature, but knockdown of HSP70 could not down-regulate the level of TNFα. Furthermore, TNFα could not influence the expression of HSP70 under normal and heat conditions. BBR targeted both HSP70 and TNFα by suppressing their gene transcription, thereby decreasing body temperature under heat conditions. In conclusion, BBR has a potential to be developed as a therapeutic strategy for suppressing the thermal effects in hot environments.
Chinese Journal of Integrative Medicine | 2017
Xuan Yu; Xin-Pei Wang; Xiao-Jin Yan; Jing-Fei Jiang; Fan Lei; Dongming Xing; Yue-ying Guo; Lijun Du
ObjectiveTo explore the anti-nociceptive effect of patchouli alcohol (PA), the essential oil isolated from Pogostemon cablin (Blanco) Bent, and determine the mechanism in molecular levels.MethodsThe acetic acid-induced writhing test and formalin-induced plantar injection test in mice were employed to confirm the effect in vivo. Intracellular calcium ion was imaged to verify PA on mu-opioid receptor (MOR). Cyclooxygenase 2 (COX2) and MOR of mouse brain were expressed for determination of PA’s target. Cellular experiments were carried out to find out COX2 and MOR expression induced by PA.ResultsPA significantly reduced latency period of visceral pain and writhing induced by acetic acid saline solution (P<0.01) and allodynia after intra-plantar formalin (P<0.01) in mice. PA also up-regulated COX2 mRNA and protein (P<0.05) with a down-regulation of MOR (P<0.05) both in in vivo and in vitro experiments, which devote to the analgesic effect of PA. A decrease in the intracellular calcium level (P<0.05) induced by PA may play an important role in its anti-nociceptive effect. PA showed the characters of enhancing the MOR expression and reducing the intracellular calcium ion similar to opioid effect.ConclusionsBoth COX2 and MOR are involved in the mechanism of PA’s anti-nociceptive effect, and the up-regulation of the receptor expression and the inhibition of intracellular calcium are a new perspective to PA’s effect on MOR.
Journal of Chinese Pharmaceutical Sciences | 2017
Xi Lu; Zhi-Yi Yuan; Jing-Fei Jiang; Fan Lei; Tian-Shi Feng; Yugang Wang; Xin-Pei Wang; Dongming Xing; Jun Li; Lijun Du
Journal of Chinese Pharmaceutical Sciences | 2017
Zhiyi Yuan; Xi Lu; Fan Lei; Jun Hu; Yugang Wang; Yu-Shuang Chai; Jing-Fei Jiang; Huiyu Li; Dongming Xing; Lijun Du