Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jing Jing Han is active.

Publication


Featured researches published by Jing Jing Han.


Blood | 2012

Elevated serum IL-10 levels in diffuse large B-cell lymphoma: a mechanism of aberrant JAK2 activation

Mamta Gupta; Jing Jing Han; Mary Stenson; Matthew J. Maurer; Linda Wellik; Guangzhen Hu; Steve Ziesmer; Ahmet Dogan; Thomas E. Witzig

Cytokines are deregulated in cancers and can contribute to tumor growth. In patients with diffuse large-cell lymphoma (DLBCL), we observed higher levels of JAK/STAT pathway-related serum cytokines (ie, IL-6, IL-10, epidermal growth factor, and IL-2) compared with controls. Of these, only IL-10 activated the JAK2 pathway in lymphoma cells in vitro. Patients with high serum IL-10 had shorter event-free survival (EFS) than patients with low levels (P > .01) and high IL-10 was correlated with high lactase dehydrogenase (P = .0085) and higher International Prognostic Index scores (P = .01). To explore the mechanism by which IL-10 may contribute to an inferior EFS, we investigated the effect of IL-10 on the JAK2 pathway and found that the IL-10/IL-10 receptor complex up-regulated JAK2 signaling. Neutralizing Ab to IL-10 inhibited constitutive and IL-10-induced JAK2/STAT3 phosphorylation. JAK2 inhibition dephosphorylated JAK2 and STAT3 and caused an inhibitory effect on phospho-JAK2-positive DLBCL cells; there was a minimal effect on phospho-JAK2-negative cells. Apoptosis induced by JAK2 inhibition was dependent on inhibition of autocrine IL-10 and c-myc expression and independent of Bcl-2 family expression. These results provide the rationale for testing JAK2 inhibitors in DLBCL patients, and indicate that serum IL-10 may be a biomarker to identify patients more likely to respond to JAK2-targeted therapy.


Blood | 2012

Dual mTORC1/mTORC2 inhibition diminishes Akt activation and induces Puma-dependent apoptosis in lymphoid malignancies.

Mamta Gupta; Andrea E. Wahner Hendrickson; Seong Seok Yun; Jing Jing Han; Paula A. Schneider; Brian D. Koh; Mary Stenson; Linda Wellik; Jennifer C. Shing; Kevin L. Peterson; Karen S. Flatten; Allan D. Hess; B. Douglas Smith; Judith E. Karp; Sharon Barr; Thomas E. Witzig; Scott H. Kaufmann

The mammalian target of rapamycin (mTOR) plays crucial roles in proliferative and antiapoptotic signaling in lymphoid malignancies. Rapamycin analogs, which are allosteric mTOR complex 1 (mTORC1) inhibitors, are active in mantle cell lymphoma and other lymphoid neoplasms, but responses are usually partial and short-lived. In the present study we compared the effects of rapamycin with the dual mTORC1/mTORC2 inhibitor OSI-027 in cell lines and clinical samples representing divers lymphoid malignancies. In contrast to rapamycin, OSI-027 markedly diminished proliferation and induced apoptosis in a variety of lymphoid cell lines and clinical samples, including specimens of B-cell acute lymphocytic leukemia (ALL), mantle cell lymphoma, marginal zone lymphoma and Sezary syndrome. Additional analysis demonstrated that OSI-027-induced apoptosis depended on transcriptional activation of the PUMA and BIM genes. Overexpression of Bcl-2, which neutralizes Puma and Bim, or loss of procaspase 9 diminished OSI-027-induced apoptosis in vitro. Moreover, OSI-027 inhibited phosphorylation of mTORC1 and mTORC2 substrates, up-regulated Puma, and induced regressions in Jeko xenografts. Collectively, these results not only identify a pathway that is critical for the cytotoxicity of dual mTORC1/mTORC2 inhibitors, but also suggest that simultaneously targeting mTORC1 and mTORC2 might be an effective anti-lymphoma strategy in vivo.


Leukemia | 2012

Regulation of STAT3 by histone deacetylase-3 in diffuse large B-cell lymphoma: implications for therapy

Mamta Gupta; Jing Jing Han; Mary Stenson; Linda Wellik; Thomas E. Witzig

Diffuse large B-cell lymphoma (DLBCL) with an activated B-cell (ABC) gene-expression profile has been shown to have a poorer prognosis compared with tumors with a germinal center B-cell type. ABC cell lines have constitutive activation of STAT3; however, the mechanisms regulating STAT3 signaling in lymphoma are unknown. In studies of class-I histone deacetylase (HDAC) expression, we found overexpression of HDAC3 in phospho STAT3-positive DLBCL and the HDAC3 was found to be complexed with STAT3. Inhibition of HDAC activity by panobinostat (LBH589) increased p300-mediated STAT3Lys685 acetylation with increased nuclear export of STAT3 to the cytoplasm. HDAC inhibition abolished STAT3Tyr705 phosphorylation with minimal effect on STAT3Ser727 and JAK2 tyrosine activity. pSTAT3Tyr705-positive DLBCLs were more sensitive to HDAC inhibition with LBH589 compared with pSTAT3Tyr705-negative DLBCLs. This cytotoxicity was associated with downregulation of the direct STAT3 target Mcl-1. HDAC3 knockdown upregulated STAT3Lys685 acetylation but prevented STAT3Tyr705 phosphorylation and inhibited survival of pSTAT3-positive DLBCL cells. These studies provide the rationale for targeting STAT3-positive DLBCL tumors with HDAC inhibitors.


Blood | 2015

The mTORC1 inhibitor everolimus has antitumor activity in vitro and produces tumor responses in patients with relapsed T-cell lymphoma

Thomas E. Witzig; Craig B. Reeder; Jing Jing Han; Betsy LaPlant; Mary Stenson; Han W. Tun; William R. Macon; Stephen M. Ansell; Thomas M. Habermann; David J. Inwards; Ivana N. Micallef; Patrick B. Johnston; Luis F. Porrata; Joseph P. Colgan; Svetomir N. Markovic; Grzegorz S. Nowakowski; Mamta Gupta

Everolimus is an oral agent that targets the mammalian target of rapamycin (mTOR) pathway. This study investigated mTOR pathway activation in T-cell lymphoma (TCL) cell lines and assessed antitumor activity in patients with relapsed/refractory TCL in a phase 2 trial. The mTOR pathway was activated in all 6 TCL cell lines tested and everolimus strongly inhibited malignant T-cell proliferation with minimal cytotoxic effects. Everolimus completely inhibited phosphorylation of ribosomal S6, a raptor/mTOR complex 1 (mTORC1) target, without a compensatory activation of the rictor/mTORC2 target Akt (S475). In the clinical trial, 16 patients with relapsed TCL were enrolled and received everolimus 10 mg by mouth daily. Seven patients (44%) had cutaneous (all mycosis fungoides); 4 (25%) had peripheral T cell not otherwise specified; 2 (13%) had anaplastic large cell; and 1 each had extranodal natural killer/T cell, angioimmunoblastic, and precursor T-lymphoblastic leukemia/lymphoma types. The overall response rate was 44% (7/16; 95% confidence interval [CI]: 20% to 70%). The median progression-free survival was 4.1 months (95% CI, 1.5-6.5) and the median overall survival was 10.2 months (95% CI, 2.6-44.3). The median duration of response for the 7 responders was 8.5 months (95% CI, 1.0 to not reached). These studies indicate that everolimus has antitumor activity and provide proof-of-concept that targeting the mTORC1 pathway in TCL is clinically relevant. This trial was registered at www.clinicaltrials.gov as #NCT00436618.


Blood | 2012

Expression of Myc, but not pSTAT3, is an adverse prognostic factor for diffuse large B-cell lymphoma treated with epratuzumab/R-CHOP

Mamta Gupta; Matthew J. Maurer; Linda Wellik; Mark E. Law; Jing Jing Han; Nazan Özsan; Ivana N. Micallef; Ahmet Dogan; Thomas E. Witzig

STAT3 regulates cell growth by up-regulating downstream targets, such as Myc. The frequency of phosphorylated STAT3 (pSTAT3) and Myc expression and their prognostic relevance is unknown within diffuse large B-cell lymphoma (DLBCL) germinal center B-cell (GCB) and non-GCB subtypes. pSTAT3 and Myc were studied by immunohistochemistry (IHC) on tumors from 40 DLBCL patients uniformly treated on a clinical trial of epratuzumab/rituximab-CHOP. A total of 35% of cases were pSTAT3-positive, and pSTAT3 positivity was more frequent in the non-GCB (P = .06) type but did not correlate with event-free survival (EFS). Myc expression was observed in 50% of cases and was more frequent in non-GCB type (P = .07). Myc-positive cases had inferior EFS in all patients, including the GCB and pSTAT3-positive cases, were more likely to express Myc (P = .06). Myc translocations involving the major breakpoint regions were found in 10% (3 of 29) of cases, and all 3 cases were GCB and had an inferior EFS (P = .09). pSTAT3, but not Myc expression, was correlated with elevated pretreatment serum cytokines, such as IL-10 (P = .05), G-CSF (P = .03), and TNF-α (P = .04). pSTAT3 IHC in DLBCL tumors has the potential to identify patients for STAT3 pathway-directed therapy; Myc IHC is a potential marker for inferior EFS in GCB patients.


Leukemia | 2014

Epigenetic mechanisms of protein tyrosine phosphatase 6 suppression in diffuse large B-cell lymphoma: implications for epigenetic therapy

Thomas E. Witzig; Guangzhen Hu; Steven M. Offer; Linda Wellik; Jing Jing Han; Mary Stenson; Ahmet Dogan; Robert B. Diasio; Mamta Gupta

Protein tyrosine phosphatases such as PTPN6 can be downregulated in various neoplasms. PTPN6 expression by immunohistochemistry in 40 diffuse large B-cell lymphoma (DLBCL) tumors was lost or suppressed in 53% (21/40). To elucidate the molecular mechanisms of PTPN6 suppression, we performed a comprehensive epigenetic analysis of PTPN6 promoter 2 (P2). None of the DLBCL primary tumors (0/37) had PTPN6 hypermethylation on the CpG1 island using methylation-specific PCR, pyrosequencing, and high-resolution melting assays. However, hypermethylation in 57% (21/37) of cases was found in a novel CpG island (CpG2) in P2. PTPN6 gene suppression was reversed by 5-aza-deoxycytidine (5-Aza), a DNA methyltransferase inhibitor, and the histone deacetylase inhibitor (HDACi) LBH589. LBH589 and 5-Aza in combination inhibited DLBCL survival and PTPN6 hypermethylation at CpG2. The role of histone modifications was investigated with a chromatin-immunoprecipitation assay demonstrating that PTPN6 P2 is associated with silencing histone marks H3K27me3 and H3K9me3 in DLBCL cells but not normal B cells. 3-Deazaneplanocin A, a histone methyltransferase inhibitor, decreased the H3K27me3 mark, whereas HDACi LBH589 increased the H3K9Ac mark within P2 resulting in re-expression of PTPN6. These studies have uncovered novel epigenetic mechanisms of PTPN6 suppression and suggest that PTPN6 may be a potential target of epigenetic therapy in DLBCL.


Oncotarget | 2015

Loss of function mutations in PTPN6 promote STAT3 deregulation via JAK3 kinase in diffuse large B-cell lymphoma

Christos Demosthenous; Jing Jing Han; Guangzhen Hu; Mary Stenson; Mamta Gupta

PTPN6 (SHP1) is a tyrosine phosphatase that negatively controls the activity of multiple signaling pathways including STAT signaling, however role of mutated PTPN6 is not much known. Here we investigated whether PTPN6 might also be a potential target for diffuse large B cell lymphoma (DLBCL) and performed Sanger sequencing of the PTPN6 gene. We have identified missense mutations within PTPN6 (N225K and A550V) in 5% (2/38) of DLBCL tumors. Site directed mutagenesis was performed to mutate wild type (WT) PTPN6 and stable cell lines were generated by lentiviral transduction of PTPN6WT, PTPN6N225K and PTPN6A550V constructs, and effects of WT or mutated PTPN6 on STAT3 signaling were analyzed. WT PTPN6 dephosphorylated STAT3, but had no effect on STAT1, STAT5 or STAT6 phosphorylation. Both PTPN6 mutants were unable to inhibit constitutive, as well as cytokines induced STAT3 activation. Both PTPN6 mutants also demonstrated reduced tyrosine phosphatase activity and exhibited enhanced STAT3 transactivation activity. Intriguingly, a lack of direct binding between STAT3 and WT or mutated PTPN6 was observed. However, compared to WT PTPN6, cells expressing PTPN6 mutants exhibited increased binding between JAK3 and PTPN6 suggesting a more dynamic interaction of PTPN6 with upstream regulators of STAT3. Consistent with this notion, both the mutants demonstrated increased resistance to JAK3 inhibitor, WHIP-154 relative to WT PTPN6. Overall, this is the first study, which demonstrates that N225K and A550V PTPN6 mutations cause loss-of-function leading to JAK3 mediated deregulation of STAT3 pathway and uncovers a mechanism that tumor cells can use to control PTPN6 substrate specificity.


Oncotarget | 2015

Translation initiation complex eIF4F is a therapeutic target for dual mTOR kinase inhibitors in non-Hodgkin lymphoma.

Christos Demosthenous; Jing Jing Han; Mary Stenson; Matthew J. Maurer; Linda Wellik; Brian K. Link; Kristen Hege; Ahmet Dogan; Eduardo M. Sotomayor; Thomas E. Witzig; Mamta Gupta


Blood | 2013

In-Vivo Activation Of STAT3 In Angioimmunoblastic T Cell Lymphoma, PTCL Not Otherwise Specified, and ALK Negative Anaplastic Large Cell Lymphoma: Implications For Therapy

Matthew J. Maurer; Mary Stenson; Linda Wellik; Jing Jing Han; Andrew L. Feldman; Thomas M. Habermann; Thomas E. Witzig


Blood | 2010

HDAC Class I Inhibition Acetylates a Non-Histone Protein STAT3 by Modulating p300-STAT3-HDAC1 Interaction In Activated B- Cell Like (ABC) Diffuse Large B Cell Lymphoma

Mamta Gupta; Jing Jing Han; Mary Stenson; Linda Wellik; Thomas E. Witzig

Collaboration


Dive into the Jing Jing Han's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ahmet Dogan

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge