Jing-Jing Wu
Dalian Institute of Chemical Physics
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jing-Jing Wu.
Drug Metabolism and Disposition | 2010
Si-Cheng Liang; Guang-Bo Ge; Hui-Xin Liu; Yan-Yan Zhang; Li-Ming Wang; Jiang-Wei Zhang; Lu Yin; Wei Li; Zhong-Ze Fang; Jing-Jing Wu; Guo-Hui Li; Ling Yang
Daphnetin has been developed as an oral medicine for treatment of coagulation disorders and rheumatoid arthritis in China, but its in vitro metabolism remains unknown. In the present study, the UDP-glucuronosyltransferase (UGT) conjugation pathways of daphnetin were characterized. Two metabolites, 7-O-monoglucuronide daphnetin (M-1) and 8-O-monoglucuronide daphnetin (M-2), were identified by liquid chromatography/mass spectrometry and NMR when daphnetin was incubated, respectively, with liver microsomes from human (HLM), rat (RLM), and minipig (PLM) and human intestinal microsomes (HIM) in the presence of UDP-glucuronic acid. Screening assays with 12 human recombinant UGTs demonstrated that the formations of M-1 and M-2 were almost exclusively catalyzed by UGT1A9 and UGT1A6, whereas M-1 was formed to a minor extent by UGT1A3, 1A4, 1A7, 1A8, and 1A10 at a high substrate concentration. Kinetics studies, chemical inhibition, and correlation analysis were used to demonstrate that human UGT1A9 and UGT1A6 were major isoforms involved in the daphnetin glucuronidations in HLM and HIM. By in vitro-in vivo extrapolation of the kinetic data measured in HLM, the hepatic clearance and the corresponding hepatic extraction ratio were estimated to be 19.3 ml/min/kg b.wt. and 0.93, respectively, suggesting that human clearance of daphnetin via the glucuronidation is extensive. Chemical inhibition of daphnetin glucuronidation in HLM, RLM, and PLM showed large species differences although the metabolites were formed similarly among the species. In conclusion, the UGT conjugation pathways of daphnetin were fully elucidated and its C-8 phenol group was more selectively catalyzed by UGTs than by the C-7 phenol.
Phytotherapy Research | 2011
Zhong-Ze Fang; Yin Nian; Wei Li; Jing-Jing Wu; Guang-Bo Ge; Pei-Pei Dong; Yan-Yan Zhang; Ming-Hua Qiu; Lei Liu; Ling Yang
The present study was carried out to investigate the antitumor activity of five cycloartane triterpenoids isolated from Cimicifuga yunnanensis on the breast cancer cell line MCF7 and its corresponding drug resistant subline R‐MCF7, including cimigenol‐3‐O‐β‐d‐xylopyranoside (compound 1), 25‐O‐acetylcimigenol‐3‐O‐β‐d‐xylopyranoside (compound 2), 25‐chlorodeoxycimigenol‐3‐O‐β‐d‐xylopyranoside (compound 3), 25‐O‐acetylcimigenol‐3‐O‐α‐l‐arabinopyranoside (compound 4) and 23‐O‐acetylcimigenol‐3‐O‐β‐d‐xylopyranoside (compound 5). The results showed that compounds 2–5 have relatively high antitumor activity on both MCF7 and R‐MCF7 cells. The involvement of apoptosis as a major cause of cycloartane triterpenoids‐induced cell death was further confirmed. The results of RT‐PCR showed that compounds 2–5 increased the expression of p53 and bax, which led to the loss of mitochondrial potential and then resulted in the activation of caspase‐7. These findings collectively demonstrated that compounds 2–5 induced apoptosis of MCF7 via p53‐dependent mitochondrial pathway. Copyright
Biosensors and Bioelectronics | 2016
Qiang Jin; Lei Feng; Dan-Dan Wang; Jing-Jing Wu; Jie Hou; Zi-Ru Dai; Shiguo Sun; Jia-Yue Wang; Guang-Bo Ge; Jingnan Cui; Ling Yang
A near-infrared fluorescent probe (DDAB) for highly selective and sensitive detection of carboxylesterase 2 (CE2) has been designed, synthesized, and systematically studied both in vitro and in vivo. Upon addition of CE2, the ester bond of DDAB could be rapidly cleaved and then release a near-infrared (NIR) fluorophore DDAO, which brings a remarkable yellow-to-blue color change and strong NIR fluorescence emission in physiological solutions. The newly developed probe exhibits excellent properties including good specificity, ultrahigh sensitivity and high imaging resolution. Moreover, DDAB has been applied to measure the real activities of CE2 in complex biological samples, as well as to screen CE2 inhibitors by using tissue preparations as the enzymes sources. The probe has also been successfully used to detect endogenous CE2 in living cells and in vivo for the first time, and the results demonstrate that such detection is highly reliable. All these prominent features of DDAB make it holds great promise for further investigation on CE2-associated biological process and for exploring the physiological functions of CE2 in living systems.
Toxicology and Applied Pharmacology | 2016
Xia Lv; Xin-Xin Wang; Jie Hou; Zhong-Ze Fang; Jing-Jing Wu; Yun-Feng Cao; Shu-Wen Liu; Guang-Bo Ge; Ling Yang
Tolcapone and entacapone are two potent catechol-O-methyltransferase (COMT) inhibitors with a similar skeleton and displaying similar pharmacological activities. However, entacapone is a very safe drug used widely in the treatment of Parkinsons disease, while tolcapone is only in limited use for Parkinsons patients and needs careful monitoring of hepatic functions due to hepatotoxicity. This study aims to investigate and compare the inhibitory effects of entacapone and tolcapone on human UDP-glucosyltransferases (UGTs), as well as to evaluate the potential risks from the view of drug-drug interactions (DDI). The results demonstrated that both tolcapone and entacapone exhibited inhibitory effects on UGT1A1, UGT1A7, UGT1A9 and UGT1A10. In contrast to entacapone, tolcapone exhibited more potent inhibitory effects on UGT1A1, UGT1A7, and UGT1A10, while their inhibitory potentials against UGT1A9 were comparable. It is noteworthy that the inhibition constants (Ki) of tolcapone and entacapone against bilirubin-O-glucuronidation in human liver microsomes (HLM) are determined as 0.68μM and 30.82μM, respectively, which means that the inhibition potency of tolcapone on UGT1A1 mediated bilirubin-O-glucuronidation in HLM is much higher than that of entacapone. Furthermore, the potential risks of tolcapone or entacapone via inhibition of human UGT1A1 were quantitatively predicted by the ratio of the areas under the plasma drug concentration-time curve (AUC). The results indicate that tolcapone may result in significant increase in AUC of bilirubin or the drugs primarily metabolized by UGT1A1, while entacapone is unlikely to cause a significant DDI through inhibition of UGT1A1.
Toxicology in Vitro | 2015
Wei He; Jing-Jing Wu; Jing Ning; Jie Hou; Hong Xin; Yu-Qi He; Guang-Bo Ge; Wei Xu
Licochalcone A (LCA) is a major bioactive compound in traditional Chinese herbal liquorice that possesses multiple pharmacological activities. However, the effects of the potential herb-drug interactions (HDIs) between LCA and therapeutic drugs on the inhibition of human cytochrome P450 (CYP) enzymes remain unclear. In the present study, the inhibitory effects of LCA on seven major human CYP isoforms, including CYP1A2, 2D6, 2E1, 2C19, 2C8, 2C9 and 3A4, were investigated in human liver microsomes (HLMs). The results demonstrated that LCA significantly inhibited the activities of CYP1A2, 2C19, 2C8, 2C9 and 3A4 and exhibited weak inhibitory effects on CYP2E1 and CYP2D6. Dixon and Lineweaver-Burk plots revealed that the inhibition types of LCA against CYP1A2, 2C9, 2C19 and 2C8 were best fit as mixed-type inhibitions, while LCA was a competitive inhibitor towards CYP3A4. The inhibition kinetic parameters (K(i)) were calculated to be 1.02 μM, 0.17 μM, 3.89 μM 0.89 μM, and 2.29 μM, for CYP1A2, 2C9, 2C19, 2C8, and 3A4, respectively. Furthermore, the areas under the plasma concentration-time curves (AUCs) of several drugs that are primarily metabolized by CYPs were estimated to increase by 2-398% in the presence of LCA, which suggested that LCA exhibited high HDI potentials via CYP inhibition. These data are significant for the clinical applications of LCA-containing herbs.
Drug Metabolism and Disposition | 2015
Jing Ning; Zhenlong Yu; Liang-Hai Hu; Chao Wang; Xiaokui Huo; Sa Deng; Jie Hou; Jing-Jing Wu; Guang-Bo Ge; Xiaochi Ma; Ling Yang
Resibufogenin (RB), one of the major active compounds of the traditional Chinese medicine Chansu, has displayed great potential as a chemotherapeutic agent in oncology. However, it is a digoxin-like compound that also exhibits extremely cardiotoxic effects. The present study aimed to characterize the metabolic behaviors of RB in humans as well as to evaluate the metabolic effects on its bioactivity and toxicity. The phase I metabolic profile in human liver microsomes was characterized systemically, and the major metabolite was identified as marinobufagenin (5β-hydroxylresibufogenin, 5-HRB) by liquid chromatography–mass spectrometry and nuclear magnetic imaging techniques. Both cytochrome P450 (P450) reaction phenotyping and inhibition assays using P450-selective chemical inhibitors demonstrated that CYP3A4 was mainly involved in RB 5β-hydroxylation with much higher selectivity than CYP3A5. Kinetic characterization demonstrated that RB 5β-hydroxylation in both human liver microsomes and human recombinant CYP3A4 obeyed biphasic kinetics and displayed similar apparent kinetic parameters. Furthermore, 5-HRB could significantly induce cell growth inhibition and apoptosis in A549 and H1299 by facilitating apoptosome assembly and caspase activation. Meanwhile, 5-HRB displayed very weak cytotoxicity of human embryonic lung fibroblasts, and in mice there was a greater tolerance to acute toxicity. In summary, CYP3A4 dominantly mediated 5β-hydroxylation and was found to be a major metabolic pathway of RB in the human liver, whereas its major metabolite (5-HRB) displayed better druglikeness than its parent compound RB. Our findings lay a solid foundation for RB metabolism studies in humans and encourage further research on the bioactive metabolite of RB.
Chemical Research in Toxicology | 2012
Liang-Liang Zhu; Guang-Bo Ge; Yong Liu; Zhimou Guo; Chengcheng Peng; Feng Zhang; Yun-Feng Cao; Jing-Jing Wu; Zhong-Ze Fang; Xinmiao Liang; Ling Yang
Diethylstilbestrol (DES), a synthetic estrogen, is famous for its carcinogenic effects. Human exposure to this compound can occur frequently through dietary ingestion and medical treatment. Glucuronidation has been demonstrated to be a predominant metabolic pathway for DES in human. Therefore, glucuronidation metabolism may have a significant impact on its toxicities, and it is essential to clarify this metabolic pathway. Accordingly, this in vitro study is designed to characterize the UGTs involved in DES glucuronidation and, furthermore, to identify the roles of individual isoforms in the reaction in liver and intestine. Human liver microsomes (HLM) displayed much higher potential for DES glucuronidation than human intestinal microsomes (HIM). The intrinsic clearances in HLM and HIM were demonstrated to be 459 and 14 μL/min/mg protein, respectively. Assays with recombinant UGTs demonstrated that UGT1A1, -1A3, -1A8, and -2B7 could catalyze DES glucuronidation, among which UGT2B7 showed the highest affinity. Chemical inhibitors of UGT2B7 and UGT1A1/1A3 both displayed similar inhibition against the reaction in UGT2B7 and HLM. In addition, DES glucuronidation in individual HLM exhibited a large individual variability and strongly correlated to UGT2B7 activity. All evidence indicates that UGT2B7 may act as a major enzyme responsible for DES glucuronidation in human liver. For HIM, both UGT2B7 inhibitor and UGT1A1/1A3/1A8 inhibitor exerted moderate inhibition. It is suggested that although UGT2B7 contributes to DES glucuronidation in intestine, other UGTs may contribute equally. In summary, this study characterizes human UGTs involved in DES glucuronidation in human liver and intestine, which may be helpful for further study about DES-related toxicities.
Drug Metabolism and Disposition | 2013
Jing-Jing Wu; Yun-Feng Cao; Yan-Yan Zhang; Yong Liu; James Y. Hong; Liang-Liang Zhu; Guang-Bo Ge; Ling Yang
To accurately predict the modifications done during metabolic processes by cytochrome P450 (P450) 3A enzyme, selecting substrates that best represent a broad range of substrate substitutions and that follow the Michaelis-Menten kinetic properties is highly necessary. In the present study, the oxidative pathways of deoxyschizandrin (DS), the most abundant lignan in Fructus Schisandrae fruit extract, were characterized with liver microsomes from human (HLM) and rat (RLM). Only one monohydroxylated metabolite 7(S)-hydroxylated metabolite (isoschizandrin, ISZ), was identified using liquid chromatography–mass spectrometry and nuclear magnetic resonance techniques. CYP3A4 and CYP3A5 were found to be the major isoforms involved in the monohydroxylation of DS. Also, the kinetic studies showed that DS hydroxylation obeyed Michaelis-Menten kinetics both in HLM and in RLM. However, the subsequent metabolism of ISZ was nearly nonexistent when DS was present. More importantly, the interactions between DS and three well characterized CYP3A probe substrates, testosterone (TST), midazolam (MDZ), and nifedipine (NIF), were studied. TST and MDZ were shown to compete with DS for the mutual binding site, causing Km to be increased. The presence of DS also lowered the binding affinities for MDZ and TST. However, DS showed only slight inhibitory effects on nifedipine (NIF) oxidation even though NIF was able to inhibit DS hydroxylation in a noncompetitive fashion. These results show that DS is a good representative substrate of MDZ and TST primarily due to their shared, large binding regions on CYP3A. Therefore, DS is an attractive candidate as a novel CYP3A probe substrate for predicting the metabolic modifications in CYP3A activity.
Planta Medica | 2011
Wei Li; Yong Liu; Xue-Xia Li; Yang Yu; Jing-Jing Wu; Qing Wang; Hong Huo; Li-Ming Wang; Ling Yang
Triptolide showed excellent antitumor activity against several solid tumors. However, its mechanism has not been fully understood. To further elucidate it, the effects of mitogen activated protein kinases (MAPKs) on the activity of triptolide towards prostate cancer cell lines were investigated in the present study using both LNCaP (p53 positive and androgen-dependent) and PC-3 (p53 deficient and androgen-independent) cells. Our results showed that triptolide exerted potent growth inhibitory and apoptotic effects on both cell lines, and the effects were independent of the expression of p53. Although upregulation of ERK and JNK phosphorylation was observed after the triptolide treatment, the results with inhibitors showed that these MAPKs were not involved in the mechanism of triptolide activity in human prostate cancer cell lines with different p53 status.
International Journal of Molecular Sciences | 2015
Zi-Ru Dai; Chun-Zhi Ai; Guang-Bo Ge; Yu-Qi He; Jing-Jing Wu; Jia-Yue Wang; Huizi Man; Yan Jia; Ling Yang
Early prediction of xenobiotic metabolism is essential for drug discovery and development. As the most important human drug-metabolizing enzyme, cytochrome P450 3A4 has a large active cavity and metabolizes a broad spectrum of substrates. The poor substrate specificity of CYP3A4 makes it a huge challenge to predict the metabolic site(s) on its substrates. This study aimed to develop a mechanism-based prediction model based on two key parameters, including the binding conformation and the reaction activity of ligands, which could reveal the process of real metabolic reaction(s) and the site(s) of modification. The newly established model was applied to predict the metabolic site(s) of steroids; a class of CYP3A4-preferred substrates. 38 steroids and 12 non-steroids were randomly divided into training and test sets. Two major metabolic reactions, including aliphatic hydroxylation and N-dealkylation, were involved in this study. At least one of the top three predicted metabolic sites was validated by the experimental data. The overall accuracy for the training and test were 82.14% and 86.36%, respectively. In summary, a mechanism-based prediction model was established for the first time, which could be used to predict the metabolic site(s) of CYP3A4 on steroids with high predictive accuracy.