Jing-Kai Huang
Academia Sinica
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jing-Kai Huang.
Scientific Reports | 2015
Wenjing Zhang; Chih-Piao Chuu; Jing-Kai Huang; Chang-Hsiao Chen; Meng-Lin Tsai; Yung-Huang Chang; Chi-Te Liang; Yu-Ze Chen; Yu-Lun Chueh; Jr-Hau He; M. Y. Chou; Lain-Jong Li
Due to its high carrier mobility, broadband absorption, and fast response time, the semi-metallic graphene is attractive for optoelectronics. Another two-dimensional semiconducting material molybdenum disulfide (MoS2) is also known as light- sensitive. Here we show that a large-area and continuous MoS2 monolayer is achievable using a CVD method and graphene is transferable onto MoS2. We demonstrate that a photodetector based on the graphene/MoS2 heterostructure is able to provide a high photogain greater than 108. Our experiments show that the electron-hole pairs are produced in the MoS2 layer after light absorption and subsequently separated across the layers. Contradictory to the expectation based on the conventional built-in electric field model for metal-semiconductor contacts, photoelectrons are injected into the graphene layer rather than trapped in MoS2 due to the presence of a perpendicular effective electric field caused by the combination of the built-in electric field, the applied electrostatic field, and charged impurities or adsorbates, resulting in a tuneable photoresponsivity.
Advanced Materials | 2013
Wenjing Zhang; Jing-Kai Huang; Chang-Hsiao Chen; Yung-Huang Chang; Yuh-Jen Cheng; Lain-Jong Li
A phototransistor based on a chemical vapor deposited (CVD) MoS2 monolayer exhibits a high photoresponsivity (2200 A W(-1) ) and an excellent photogain (5000). The presence of shallow traps contributes to the persistent photoconductivity. Ambient adsorbates act as p-dopants to MoS2 , decreasing the carrier mobility, photoresponsivity, and photogain.
Nano Letters | 2013
Yi-Hsien Lee; Lili Yu; Han Wang; Wenjing Fang; Xi Ling; Yumeng Shi; Cheng-Te Lin; Jing-Kai Huang; Mu-Tung Chang; Chia-Seng Chang; Mildred S. Dresselhaus; Tomas Palacios; Lain-Jong Li; Jing Kong
Recently, monolayers of layered transition metal dichalcogenides (LTMD), such as MX2 (M = Mo, W and X = S, Se), have been reported to exhibit significant spin-valley coupling and optoelectronic performances because of the unique structural symmetry and band structures. Monolayers in this class of materials offered a burgeoning field in fundamental physics, energy harvesting, electronics, and optoelectronics. However, most studies to date are hindered by great challenges on the synthesis and transfer of high-quality LTMD monolayers. Hence, a feasible synthetic process to overcome the challenges is essential. Here, we demonstrate the growth of high-quality MS2 (M = Mo, W) monolayers using ambient-pressure chemical vapor deposition (APCVD) with the seeding of perylene-3,4,9,10-tetracarboxylic acid tetrapotassium salt (PTAS). The growth of a MS2 monolayer is achieved on various surfaces with a significant flexibility to surface corrugation. Electronic transport and optical performances of the as-grown MS2 monolayers are comparable to those of exfoliated MS2 monolayers. We also demonstrate a robust technique in transferring the MS2 monolayer samples to diverse surfaces, which may stimulate the progress on the class of materials and open a new route toward the synthesis of various novel hybrid structures with LTMD monolayer and functional materials.
Scientific Reports | 2013
Yumeng Shi; Jing-Kai Huang; Limin Jin; Yu-Te Hsu; S. F. Yu; Lain-Jong Li; Hui Ying Yang
We report a controllable wet method for effective decoration of 2-dimensional (2D) molybdenum disulfide (MoS2) layers with Au nanoparticles (NPs). Au NPs can be selectively formed on the edge sites or defective sites of MoS2 layers. The Au-MoS2 nano-composites are formed by non-covalent bond. The size distribution, morphology and density of the metal nanoparticles can be tuned by changing the defect density in MoS2 layers. Field effect transistors were directly fabricated by placing ion gel gate dielectrics on Au-decorated MoS2 layers without the need to transfer these MoS2 layers to SiO2/Si substrates for bottom gate devices. The ion gel method allows probing the intrinsic electrical properties of the as-grown and Au-decorated MoS2 layers. This study shows that Au NPs impose remarkable p-doping effects to the MoS2 transistors without degrading their electrical characteristics.
ACS Nano | 2016
Hau-Vei Han; Ang-Yu Lu; Li-Syuan Lu; Jing-Kai Huang; Henan Li; Chang-Lung Hsu; Yung-Chang Lin; Ming-Hui Chiu; Kazu Suenaga; Chih-Wei Chu; Hao-Chung Kuo; Wen-Hao Chang; Lain-Jong Li; Yumeng Shi
Atomically thin two-dimensional transition-metal dichalcogenides (TMDCs) have attracted much attention recently due to their unique electronic and optical properties for future optoelectronic devices. The chemical vapor deposition (CVD) method is able to generate TMDCs layers with a scalable size and a controllable thickness. However, the TMDC monolayers grown by CVD may incorporate structural defects, and it is fundamentally important to understand the relation between photoluminescence and structural defects. In this report, point defects (Se vacancies) and oxidized Se defects in CVD-grown MoSe2 monolayers are identified by transmission electron microscopy and X-ray photoelectron spectroscopy. These defects can significantly trap free charge carriers and localize excitons, leading to the smearing of free band-to-band exciton emission. Here, we report that the simple hydrohalic acid treatment (such as HBr) is able to efficiently suppress the trap-state emission and promote the neutral exciton and trion emission in defective MoSe2 monolayers through the p-doping process, where the overall photoluminescence intensity at room temperature can be enhanced by a factor of 30. We show that HBr treatment is able to activate distinctive trion and free exciton emissions even from highly defective MoSe2 layers. Our results suggest that the HBr treatment not only reduces the n-doping in MoSe2 but also reduces the structural defects. The results provide further insights of the control and tailoring the exciton emission from CVD-grown monolayer TMDCs.
Applied Physics Letters | 2000
Jyh-Liang Wang; Jenn-Fang Chen; Jing-Kai Huang; P. Y. Wang; X. J. Guo
The carrier distribution and defects have been investigated in InAs/GaAs quantum dots by cross-sectional transmission electron microscopy (XTEM), capacitance–voltage, and deep level transient spectroscopy. Carrier confinement is found for 1.1- and 2.3-monolayer-(ML)-thick InAs samples. For 2.3 ML sample, XTEM images show the presence of defect-free self-assembled quantum dots. With further increase of the InAs thickness to 3.4 ML, significant carrier depletion caused by the relaxation is observed. In contrast to 1.1 and 2.3 ML samples in which no traps are detected, two broad traps and three discrete traps at 0.54, 0.40, and 0.34 eV are observed in 3.4 ML sample. The traps at 0.54 and 0.34 eV are found to be similar to the traps observed in relaxed In0.2Ga0.8As/GaAs single quantum well structures. By comparing with the XTEM images, the trap at 0.54 eV is identified to be the relaxation-induced dislocation trap in the GaAs layer.
ACS Applied Materials & Interfaces | 2014
Yung-Huang Chang; Revannath D Nikam; Cheng-Te Lin; Jing-Kai Huang; Chien-Chih Tseng; Chang-Lung Hsu; Chia-Chin Cheng; Ching-Yuan Su; Lain-Jong Li; Daniel H.C. Chua
Molybdenum sulfide has recently attracted much attention because of its low cost and excellent catalytical effects in the application of hydrogen evolution reaction (HER). To improve the HER efficiency, many researchers have extensively explored various avenues such as material modification, forming hybrid structures or modifying geometric morphology. In this work, we reported a significant enhancement in the electrocatalytic activity of the MoSx via growing on Tetracyanoquinodimethane (TCNQ) treated carbon cloth, where the MoSx was synthesized by thermolysis from the ammonium tetrathiomolybdate ((NH4)2MoS4) precursor at 170 °C. The pyridinic N- and graphitic N-like species on the surface of carbon cloth arising from the TCNQ treatment facilitate the formation of Mo(5+) and S2(2-) species in the MoSx, especially with S2(2-) serving as an active site for HER. In addition, the smaller particle size of the MoSx grown on TCNQ-treated carbon cloth reveals a high ratio of edge sites relative to basal plane sites, indicating the richer effective reaction sites and superior electrocatalytic characteristics. Hence, we reported a high hydrogen evolution rate for MoSx on TCNQ-treated carbon cloth of 6408 mL g(-1) cm(-2) h(-1) (286 mmol g(-1) cm(-2) h(-1)) at an overpotential of V = 0.2 V. This study provides the fundamental concepts useful in the design and preparation of transition metal dichalcogenide catalysts, beneficial in the development in clean energy.
Nature Communications | 2016
Chendong Zhang; Yuxuan Chen; Jing-Kai Huang; Xianxin Wu; Lain-Jong Li; Wang Yao; J. Tersoff; Chih-Kang Shih
Semiconductor heterostructures are fundamental building blocks for many important device applications. The emergence of two-dimensional semiconductors opens up a new realm for creating heterostructures. As the bandgaps of transition metal dichalcogenides thin films have sensitive layer dependence, it is natural to create lateral heterojunctions (HJs) using the same materials with different thicknesses. Here we show the real space image of electronic structures across the bilayer–monolayer interface in MoSe2 and WSe2, using scanning tunnelling microscopy and spectroscopy. Most bilayer–monolayer HJs are found to have a zig-zag-orientated interface, and the band alignment of such atomically sharp HJs is of type-I with a well-defined interface mode that acts as a narrower-gap quantum wire. The ability to utilize such commonly existing thickness terraces as lateral HJs is a crucial addition to the tool set for device applications based on atomically thin transition metal dichalcogenides, with the advantage of easy and flexible implementation.
Applied Physics Letters | 1989
G. R. Bai; W. Tao; Runwen Wang; L. M. Xie; X. K. Zhang; Jing-Kai Huang; C.T. Qian; W. K. Zhou; C.Q. Ye; J. G. Ren; Yaolin Li; W. M. Luo; J. B. Chen
Thin films of the high Tc superconducting Y‐Ba‐Cu metal oxide have been prepared for the first time by plasma‐assisted organometallic chemical vapor deposition using β‐diketonate chelates of Y, Ba, and Cu, Y(C11H19O2)3, Ba(C11H19O2)2, and Cu(C11H19O2)2 as starting materials, followed by post‐annealing under a reduced pressure of oxygen stream. X‐ray diffraction spectra indicate that the films deposited on the yttria‐stabilized zirconia (YSZ) substrate have a significant preferential orientation of the crystallite c axis being perpendicular to the substrate surface. Four‐probe resistivity measurements reveal the temperature of the onset of superconductivity at 91.6 K and zero resistance by 78.5 K.
Applied Physics Letters | 2015
Chun-I Lu; Christopher John Butler; Jing-Kai Huang; C. R. Hsing; H. C. Yang; Yu-Hsun Chu; Chi-Hung Luo; Yung-Che Sun; Shih-Hao Hsu; Kui-Hong Ou Yang; Ching-Ming Wei; Lain-Jong Li; Minn-Tsong Lin
Transition metal dichalcogenides such as the semiconductor MoS2 are a class of two-dimensional crystals. The surface morphology and quality of MoS2 grown by chemical vapor deposition are examined using atomic force and scanning tunneling microscopy techniques. By analyzing the moire patterns from several triangular MoS2 islands, we find that there exist at least five different superstructures and that the relative rotational angles between the MoS2 adlayer and graphite substrate lattices are typically less than 3°. We conclude that since MoS2 grows at graphite step-edges, it is the edge structure which controls the orientation of the islands, with those growing from zig-zag (or armchair) edges tending to orient with one lattice vector parallel (perpendicular) to the step-edge.