Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jing Ling is active.

Publication


Featured researches published by Jing Ling.


Nature Medicine | 2009

The cerebral cavernous malformation signaling pathway promotes vascular integrity via Rho GTPases

Kevin J. Whitehead; Aubrey C. Chan; Sutip Navankasattusas; Wonshill Koh; Nyall R. London; Jing Ling; Anne H Mayo; Stavros G. Drakos; Christopher A. Jones; Weiquan Zhu; Douglas A. Marchuk; George E. Davis; Dean Y. Li

Cerebral cavernous malformation (CCM) is a common vascular dysplasia that affects both systemic and central nervous system blood vessels. Loss of function mutations in the CCM2 gene cause CCM. Here we show that targeted disruption of Ccm2 in mice results in failed lumen formation and early embryonic death through an endothelial cell autonomous mechanism. We show that CCM2 regulates endothelial cytoskeletal architecture, cell-to-cell interactions and lumen formation. Heterozygosity at Ccm2, a genotype equivalent to that in human CCM, results in impaired endothelial barrier function. On the basis of our biochemical studies indicating that loss of CCM2 results in activation of RHOA GTPase, we rescued the cellular phenotype and barrier function in heterozygous mice with simvastatin, a drug known to inhibit Rho GTPases. These data offer the prospect for pharmacological treatment of a human vascular dysplasia with a widely available and safe drug.


Journal of Clinical Investigation | 2011

Mutations in 2 distinct genetic pathways result in cerebral cavernous malformations in mice

Aubrey C. Chan; Stavros G. Drakos; Oscar E. Ruiz; Alexandra C.H. Smith; Christopher C. Gibson; Jing Ling; Samuel F. Passi; Amber N. Stratman; Anastasia Sacharidou; M. Patricia Revelo; Allie H. Grossmann; Nikolaos A. Diakos; George E. Davis; Mark M. Metzstein; Kevin J. Whitehead; Dean Y. Li

Cerebral cavernous malformations (CCMs) are a common type of vascular malformation in the brain that are a major cause of hemorrhagic stroke. This condition has been independently linked to 3 separate genes: Krev1 interaction trapped (KRIT1), Cerebral cavernous malformation 2 (CCM2), and Programmed cell death 10 (PDCD10). Despite the commonality in disease pathology caused by mutations in these 3 genes, we found that the loss of Pdcd10 results in significantly different developmental, cell biological, and signaling phenotypes from those seen in the absence of Ccm2 and Krit1. PDCD10 bound to germinal center kinase III (GCKIII) family members, a subset of serine-threonine kinases, and facilitated lumen formation by endothelial cells both in vivo and in vitro. These findings suggest that CCM may be a common tissue manifestation of distinct mechanistic pathways. Nevertheless, loss of heterozygosity (LOH) for either Pdcd10 or Ccm2 resulted in CCMs in mice. The murine phenotype induced by loss of either protein reproduced all of the key clinical features observed in human patients with CCM, as determined by direct comparison with genotype-specific human surgical specimens. These results suggest that CCM may be more effectively treated by directing therapies based on the underlying genetic mutation rather than treating the condition as a single clinical entity.


Circulation | 2015

Strategy for identifying repurposed drugs for the treatment of cerebral cavernous malformation.

Christopher C. Gibson; Weiquan Zhu; Chadwick T. Davis; Jay A. Bowman-Kirigin; Aubrey C. Chan; Jing Ling; Ashley E. Walker; Luca Goitre; Simona Delle Monache; Saverio Francesco Retta; Yan Ting Shiu; Allie H. Grossmann; Kirk R. Thomas; Anthony J. Donato; Lisa A. Lesniewski; Kevin J. Whitehead; Dean Y. Li

Background— Cerebral cavernous malformation (CCM) is a hemorrhagic stroke disease affecting up to 0.5% of North Americans that has no approved nonsurgical treatment. A subset of patients have a hereditary form of the disease due primarily to loss-of-function mutations in KRIT1, CCM2, or PDCD10. We sought to identify known drugs that could be repurposed to treat CCM. Methods and Results— We developed an unbiased screening platform based on both cellular and animal models of loss of function of CCM2. Our discovery strategy consisted of 4 steps: an automated immunofluorescence and machine-learning–based primary screen of structural phenotypes in human endothelial cells deficient in CCM2, a secondary screen of functional changes in endothelial stability in these same cells, a rapid in vivo tertiary screen of dermal microvascular leak in mice lacking endothelial Ccm2, and finally a quaternary screen of CCM lesion burden in these same mice. We screened 2100 known drugs and bioactive compounds and identified 2 candidates, cholecalciferol (vitamin D3) and tempol (a scavenger of superoxide), for further study. Each drug decreased lesion burden in a mouse model of CCM vascular disease by ≈50%. Conclusions— By identifying known drugs as potential therapeutics for CCM, we have decreased the time, cost, and risk of bringing treatments to patients. Each drug also prompts additional exploration of biomarkers of CCM disease. We further suggest that the structure-function screening platform presented here may be adapted and scaled to facilitate drug discovery for diverse loss-of-function genetic vascular disease.


Journal of Clinical Investigation | 2014

Proteasome function is required for platelet production

Dallas S. Shi; Matthew C. Smith; Robert A. Campbell; Patrick W. Zimmerman; Zechariah B. Franks; Bjorn F. Kraemer; Kellie R. Machlus; Jing Ling; Patrick Kamba; Hansjörg Schwertz; Jesse W. Rowley; Rodney R. Miles; Zhi-Jian Liu; Martha Sola-Visner; Joseph E. Italiano; Hilary Christensen; Walter H. A. Kahr; Dean Y. Li; Andrew S. Weyrich

The proteasome inhibiter bortezomib has been successfully used to treat patients with relapsed multiple myeloma; however, many of these patients become thrombocytopenic, and it is not clear how the proteasome influences platelet production. Here we determined that pharmacologic inhibition of proteasome activity blocks proplatelet formation in human and mouse megakaryocytes. We also found that megakaryocytes isolated from mice deficient for PSMC1, an essential subunit of the 26S proteasome, fail to produce proplatelets. Consistent with decreased proplatelet formation, mice lacking PSMC1 in platelets (Psmc1(fl/fl) Pf4-Cre mice) exhibited severe thrombocytopenia and died shortly after birth. The failure to produce proplatelets in proteasome-inhibited megakaryocytes was due to upregulation and hyperactivation of the small GTPase, RhoA, rather than NF-κB, as has been previously suggested. Inhibition of RhoA or its downstream target, Rho-associated protein kinase (ROCK), restored megakaryocyte proplatelet formation in the setting of proteasome inhibition in vitro. Similarly, fasudil, a ROCK inhibitor used clinically to treat cerebral vasospasm, restored platelet counts in adult mice that were made thrombocytopenic by tamoxifen-induced suppression of proteasome activity in megakaryocytes and platelets (Psmc1(fl/fl) Pdgf-Cre-ER mice). These results indicate that proteasome function is critical for thrombopoiesis, and suggest inhibition of RhoA signaling as a potential strategy to treat thrombocytopenia in bortezomib-treated multiple myeloma patients.


Human Molecular Genetics | 2014

Lack of CCM1 induces hypersprouting and impairs response to flow

Tara M. Mleynek; Aubrey C. Chan; Michael J. Redd; Christopher C. Gibson; Chadwick T. Davis; Dallas S. Shi; Tiehua Chen; Kandis L. Carter; Jing Ling; Raquel Blanco; Holger Gerhardt; Kevin J. Whitehead; Dean Y. Li

Cerebral cavernous malformation (CCM) is a disease of vascular malformations known to be caused by mutations in one of three genes: CCM1, CCM2 or CCM3. Despite several studies, the mechanism of CCM lesion onset remains unclear. Using a Ccm1 knockout mouse model, we studied the morphogenesis of early lesion formation in the retina in order to provide insight into potential mechanisms. We demonstrate that lesions develop in a stereotypic location and pattern, preceded by endothelial hypersprouting as confirmed in a zebrafish model of disease. The vascular defects seen with loss of Ccm1 suggest a defect in endothelial flow response. Taken together, these results suggest new mechanisms of early CCM disease pathogenesis and provide a framework for further study.


Journal of Immunology | 2014

ARF6 inhibition stabilizes the vasculature and enhances survival during endotoxic shock

Chadwick T. Davis; Weiquan Zhu; Christopher C. Gibson; Jay A. Bowman-Kirigin; Lise K. Sorensen; Jing Ling; Huiming Sun; Sutip Navankasattusas; Dean Y. Li

The vascular endothelium responds to infection by destabilizing endothelial cell–cell junctions to allow fluid and cells to pass into peripheral tissues, facilitating clearance of infection and tissue repair. During sepsis, endotoxin and other proinflammatory molecules induce excessive vascular leak, which can cause organ dysfunction, shock, and death. Current therapies for sepsis are limited to antibiotics and supportive care, which are often insufficient to reduce morbidity and prevent mortality. Previous attempts at blocking inflammatory cytokine responses in humans proved ineffective at reducing the pathologies associated with sepsis, highlighting the need for a new therapeutic strategy. The small GTPase ARF6 is activated by a MyD88–ARNO interaction to induce vascular leak through disruption of endothelial adherens junctions. In this study, we show that the MyD88–ARNO–ARF6–signaling axis is responsible for LPS-induced endothelial permeability and is a destabilizing convergence point used by multiple inflammatory cues. We also show that blocking ARF6 with a peptide construct of its N terminus is sufficient to reduce vascular leak and enhance survival during endotoxic shock, without inhibiting the host cytokine response. Our data highlight the therapeutic potential of blocking ARF6 and reducing vascular leak for the treatment of inflammatory conditions, such as endotoxemia.


The Journal of Physiology | 2015

Greater impairments in cerebral artery compared with skeletal muscle feed artery endothelial function in a mouse model of increased large artery stiffness.

Ashley E. Walker; Grant D. Henson; Kelly Reihl; R. Garrett Morgan; Parker S. Dobson; Elizabeth I. Nielson; Jing Ling; Robert P. Mecham; Dean Y. Li; Lisa A. Lesniewski; Anthony J. Donato

Increased large artery stiffness is a hallmark of arterial dysfunction with advancing age and is also present in other disease conditions such as diabetes. Increased large artery stiffness is correlated with resistance artery dysfunction in humans. Using a mouse model of altered arterial elastin content, this is the first study to examine the cause‐and‐effect relationship between large artery stiffness and peripheral resistance artery function. Our results indicate that mice with genetically greater large artery stiffness have impaired cerebral artery endothelial function, but generally preserved skeletal muscle feed artery endothelial function. The mechanisms for impaired cerebral artery endothelial function are reduced nitric oxide bioavailability and increased oxidative stress. These findings suggest that interventions that target large artery stiffness may be important to reduce disease risk associated with cerebral artery dysfunction in conditions such as advancing age.


Journal of Clinical Investigation | 2017

Small GTPase ARF6 controls VEGFR2 trafficking and signaling in diabetic retinopathy

Weiquan Zhu; Dallas S. Shi; Jacob M. Winter; Bianca Rich; Zongzhong Tong; Lise K. Sorensen; Helong Zhao; Yi Huang; Zhengfu Tai; Tara M. Mleynek; Jae Hyuk Yoo; Christine Dunn; Jing Ling; Jake A. Bergquist; Jackson Richards; Amanda Jiang; Lisa A. Lesniewski; M. Elizabeth Hartnett; Diane M. Ward; Alan L. Mueller; Kirill Ostanin; Kirk R. Thomas; Shannon J. Odelberg; Dean Y. Li

The devastating sequelae of diabetes mellitus include microvascular permeability, which results in retinopathy. Despite clinical and scientific advances, there remains a need for new approaches to treat retinopathy. Here, we have presented a possible treatment strategy, whereby targeting the small GTPase ARF6 alters VEGFR2 trafficking and reverses signs of pathology in 4 animal models that represent features of diabetic retinopathy and in a fifth model of ocular pathological angiogenesis. Specifically, we determined that the same signaling pathway utilizes distinct GEFs to sequentially activate ARF6, and these GEFs exert distinct but complementary effects on VEGFR2 trafficking and signal transduction. ARF6 activation was independently regulated by 2 different ARF GEFs — ARNO and GEP100. Interaction between VEGFR2 and ARNO activated ARF6 and stimulated VEGFR2 internalization, whereas a VEGFR2 interaction with GEP100 activated ARF6 to promote VEGFR2 recycling via coreceptor binding. Intervening in either pathway inhibited VEGFR2 signal output. Finally, using a combination of in vitro, cellular, genetic, and pharmacologic techniques, we demonstrated that ARF6 is pivotal in VEGFR2 trafficking and that targeting ARF6-mediated VEGFR2 trafficking has potential as a therapeutic approach for retinal vascular diseases such as diabetic retinopathy.


Cell Death and Disease | 2018

PI3Ka-Akt1-mediated Prdm4 induction in adipose tissue increases energy expenditure, inhibits weight gain, and improves insulin resistance in diet-induced obese mice

No-Joon Song; Seo-Hyuk Chang; Suji Kim; Vanja Panic; Byunghyun Jang; Ui Jeong Yun; Jin Hee Choi; Zhen Li; Ki-Moon Park; Jung-Hoon Yoon; Sunghwan Kim; Jae Hyuk Yoo; Jing Ling; Kirk R. Thomas; Claudio J. Villanueva; Dean Y. Li; Jee-Yin Ahn; Jin-Mo Ku; Kye Won Park

Stimulation of white adipose tissue (WAT) browning is considered as a potential approach to treat obesity and metabolic diseases. Our previous studies have shown that phytochemical butein can stimulate WAT browning through induction of Prdm4 in adipocytes. Here, we investigated the effects of butein on diet-induced obesity and its underlying molecular mechanism. Treatment with butein prevented weight gains and improved metabolic profiles in diet-induced obese mice. Butein treatment groups also displayed higher body temperature, increased energy expenditure, and enhanced expression of thermogenic genes in adipose tissue. Butein also suppressed body weight gains and improved glucose and insulin tolerance in mice housed at thermoneutrality (30 °C). These effects were associated with adipose-selective induction of Prdm4, suggesting the role of Prdm4 in butein-mediated anti-obese effects. To directly assess the in vivo role of Prdm4, we generated aP2-Prdm4 transgenic mouse lines overexpressing Prdm4 in adipose tissues. Adipose-specific transgenic expression of Prdm4 recapitulated the butein’s actions in stimulating energy expenditure, cold tolerance, and thermogenic gene expression, resulting in prevention of obesity and improvement of metabolism. Mechanistically, direct inhibition of PI3Kα activity followed by selective suppression of its downstream Akt1 mirrored butein’s effect on Ucp1 expression and oxygen consumption. In addition, effects of butein were completely abolished in Akt1 KO mouse embryonic fibroblasts. Together, these studies demonstrate the role of butein in obesity and metabolic diseases, further highlighting that adipose PI3Kα–Akt1–Prdm4 axis is a regulator of energy expenditure.


Nature Medicine | 2009

Erratum: Corrigendum: The cerebral cavernous malformation signaling pathway promotes vascular integrity via Rho GTPases

Kevin J. Whitehead; Aubrey C. Chan; Sutip Navankasattusas; Wonshill Koh; Nyall R. London; Jing Ling; Anne H Mayo; Stavros G. Drakos; Christopher A. Jones; Weiquan Zhu; Douglas A. Marchuk; George E. Davis; Dean Y. Li

Betty YFY Tam, Kevin Wei, John S Rudge, Jana Hoffman, Joceyln Holash, Sang-ki Park, Jenny Yuan, Colleen Hefner, Cecile Chartier, Jeng-Shin Lee, Shelly Jiang, Nihar R Nayak, Frans A Kuypers, Lisa Ma, Uma Sundram, Grace Wu, Joseph A Garcia, Stanley L Schrier, Jacquelyn J Maher, Randall S Johnson, George D Yancopoulos, Richard C Mulligan & Calvin J Kuo Nat. Med. 12, 793–800 (2006); published online 25 June 2006; corrected after print 6 April 2009

Collaboration


Dive into the Jing Ling's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne H Mayo

University of Missouri

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge