Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jing-Peng Liu is active.

Publication


Featured researches published by Jing-Peng Liu.


International Journal of Molecular Sciences | 2016

Resveratrol Attenuates Acute Inflammatory Injury in Experimental Subarachnoid Hemorrhage in Rats via Inhibition of TLR4 Pathway

Xiang-Sheng Zhang; Wei Li; Qi Wu; Ling-Yun Wu; Zhen-Nan Ye; Jing-Peng Liu; Zong Zhuang; Mengliang Zhou; Xin Zhang; Chun-Hua Hang

Toll-like receptor 4 (TLR4) has been proven to play a critical role in neuroinflammation and to represent an important therapeutic target following subarachnoid hemorrhage (SAH). Resveratrol (RSV), a natural occurring polyphenolic compound, has a powerful anti-inflammatory property. However, the underlying molecular mechanisms of RSV in protecting against early brain injury (EBI) after SAH remain obscure. The purpose of this study was to investigate the effects of RSV on the TLR4-related inflammatory signaling pathway and EBI in rats after SAH. A prechiasmatic cistern SAH model was used in our experiment. The expressions of TLR4, high-mobility group box 1 (HMGB1), myeloid differentiation factor 88 (MyD88), and nuclear factor-κB (NF-κB) were evaluated by Western blot and immunohistochemistry. The expressions of Iba-1 and pro-inflammatory cytokines in brain cortex were determined by Western blot, immunofluorescence staining, or enzyme-linked immunosorbent assay. Neural apoptosis, brain edema, and neurological function were further evaluated to investigate the development of EBI. We found that post-SAH treatment with RSV could markedly inhibit the expressions of TLR4, HMGB1, MyD88, and NF-κB. Meanwhile, RSV significantly reduced microglia activation, as well as inflammatory cytokines leading to the amelioration of neural apoptosis, brain edema, and neurological behavior impairment at 24 h after SAH. However, RSV treatment failed to alleviate brain edema and neurological deficits at 72 h after SAH. These results indicated that RSV treatment could alleviate EBI after SAH, at least in part, via inhibition of TLR4-mediated inflammatory signaling pathway.


Frontiers in Neuroscience | 2017

Resveratrol Attenuates Early Brain Injury after Experimental Subarachnoid Hemorrhage via Inhibition of NLRP3 Inflammasome Activation

Xiang-Sheng Zhang; Qi Wu; Qing-Rong Zhang; Yue Lu; Jing-Peng Liu; Wei Li; Sheng-yin Lv; Mengliang Zhou; Xin Zhang; Chun-Hua Hang

Previous studies have demonstrated resveratrol (RSV) has beneficial effects in early brain injury (EBI) after subarachnoid hemorrhage (SAH). However, the beneficial effects of RSV and the underlying mechanisms have not been clearly identified. The nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activation plays a crucial role in the EBI pathogenesis. The aim of this study was to investigate the role of RSV on the NLRP3 inflammasome signaling pathway and EBI in rats after SAH. A prechiasmatic cistern injection model was established in rats, and the primary cultured cortical neurons were stimulated with oxyhemoglobin (oxyHb) to induce SAH in vitro. It showed that the NLRP3 inflammasome components, including NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), caspase-1, mature interleukin-1β (IL-1β), and interleukin-18 (IL-18) were upregulated after SAH, and the enhanced NLRP3 after SAH was mainly located in microglia. Treatment with 60 or 90 mg/kg RSV after SAH dramatically inhibited the expression of NLRP3, but there was no significant difference in the expression of NLRP3 between the SAH + 60 mg/kg RSV and SAH + 90 mg/kg RSV groups. In addition, treatment with 30 mg/kg RSV did not significantly reduced the expression of NLRP3. We next evaluated the neuroprotective effects of RSV against SAH. We determined that SAH-induced NLRP3 inflammasome activation was significantly inhibited in the SAH + 60 mg/kg RSV group. Meanwhile, 60 mg/kg RSV administration could markedly inhibit microglia activation and neutrophils infiltration after SAH. Concomitant with the decreased cerebral inflammation, RSV evidently reduced cortical apoptosis, brain edema, and neurobehavioral impairment after SAH. In vitro experiments, RSV treatment also clearly protected primary cortical neurons against oxyHb insults, including reduced the proportion of neuronal apoptosis, alleviated neuronal degeneration, and improved cell viabilities. These in vitro data further confirm that RSV has an efficient neuroprotection against SAH. Taken together, these in vivo and in vitro findings suggested RSV could protect against EBI after SAH, at least partially via inhibiting NLRP3 inflammasome signaling pathway.


Neurological Sciences | 2016

Upregulation of miR-183 expression and its clinical significance in human brain glioma

Zhen-Nan Ye; Zi-Huan Zhang; Ling-Yun Wu; Ce-Gang Liu; Qiang Chen; Jing-Peng Liu; Xiaoliang Wang; Zong Zhuang; Wei Li; Shanshui Xu; Chun-Hua Hang

Glioma is the most common type of primary malignant tumor in the central nervous system (CNS) with a high incidence and a high mortality rate, as well as an extremely low 5-year survival rate. As a class of small non-coding RNAs, microRNAs (miRNAs) may be closely involved in carcinogenesis and might also be connected with glioma diagnosis and prognosis. In this study, we aimed at investigating the expression level of microRNA-183 (miR-183) in 105 cases of glioma tissues of four World Health Organization (WHO) grades and 10 cases of normal brain tissues and its potential predictive and prognostic values in glioma. We found that the expression levels of miR-183 were significantly higher in glioma tissues than that in normal brain tissues, and also higher in high-grade gliomas (WHO grade III and IV) compared with low-grade gliomas (WHO grade I and II). The miR-183 expression level was classified as low or high according to the median value. High expression of miR-183 was found to significantly correlate with larger tumor size, higher WHO grade, and worse Karnofsky performance score (KPS). Kaplan–Meier survival analysis showed that patients with high miR-183 expression had worse overall survival (OS) and progression-free survival (PFS) than patients with low miR-183 expression. Moreover, univariate and multivariate analyses indicated that miR-183 expression level was an independent prognostic parameter of a patient’s OS and PFS. In conclusion, our study indicated that miR-183 was upregulated in glioma, and that it may be used as a potential biomarker of poor prognosis in patients with glioma.


Brain Research | 2016

Inhibition of myeloid differentiation factor 88(MyD88) by ST2825 provides neuroprotection after experimental traumatic brain injury in mice.

Hua-Sheng Zhang; Hua Li; Dingding Zhang; Huiying Yan; Zi-Huan Zhang; Chenhui Zhou; Zhen-Nan Ye; Qiang Chen; Tian-Wei Jiang; Jing-Peng Liu; Chun-Hua Hang

Myeloid differentiation factor 88(MyD88) is an endogenous adaptor protein that plays an important role in coordinating intracellular inflammatory responses induced by agonists of the Toll-like receptor and interleukin-1 receptor families. MyD88 has been reported to be essential for neuronal death in animal models and may represent a therapeutic target for pharmacologic inhibition following traumatic brain injury (TBI). The purpose of the current study was to investigate the neuroprotective effect of MyD88 specific inhibitor ST2825 in an experimental mouse model of TBI. Intracerebroventricular (ICV) injection of high concentration (20μg/μL) ST2825 (15min post TBI) attenuated the development of TBI in mice, markedly improved neurological function and reduced brain edema. Decreased neural apoptosis and increased neuronal survival were also observed. Biochemically, the high concentration of ST2825 significantly reduced the levels of MyD88, further decreased TAK1, p-TAK1, nuclear p65 and increased IκB-α. Additionally, ST2825 significantly reduced the levels of Iba-1 and inflammatory factors TNF-α and IL-1β. These data provide an experimental rationale for evaluation of MyD88 as a drug target and highlight the potential therapeutic implications of ST2825 in TBI.


Frontiers in Molecular Neuroscience | 2017

Roles of Pannexin-1 Channels in Inflammatory Response through the TLRs/NF-Kappa B Signaling Pathway Following Experimental Subarachnoid Hemorrhage in Rats

Ling-Yun Wu; Zhen-Nan Ye; Chenhui Zhou; Chun-xi Wang; Guang-bin Xie; Xiang-Sheng Zhang; Yongyue Gao; Zi-Huan Zhang; Mengliang Zhou; Zong Zhuang; Jing-Peng Liu; Chun-Hua Hang; Ji-Xin Shi

Background: Accumulating evidence suggests that neuroinflammation plays a critical role in early brain injury after subarachnoid hemorrhage (SAH). Pannexin-1 channels, as a member of gap junction proteins located on the plasma membrane, releases ATP, ions, second messengers, neurotransmitters, and molecules up to 1 kD into the extracellular space, when activated. Previous studies identified that the opening of Pannexin-1 channels is essential for cellular migration, apoptosis and especially inflammation, but its effects on inflammatory response in SAH model have not been explored yet. Methods: Adult male Sprague-Dawley rats were divided into six groups: sham group (n = 20), SAH group (n = 20), SAH + LV-Scramble-ShRNA group (n = 20), SAH + LV-ShRNA-Panx1 group (n = 20), SAH + LV-NC group (n = 20), and SAH + LV-Panx1-EGFP group (n = 20). The rat SAH model was induced by injection of 0.3 ml fresh arterial, non-heparinized blood into the prechiasmatic cistern in 20 s. In SAH + LV-ShRNA-Panx1 group and SAH + LV-Panx1-EGFP group, lentivirus was administered via intracerebroventricular injection (i.c.v.) at 72 h before the induction of SAH. The Quantitative real-time polymerase chain reaction, electrophoretic mobility shift assay, enzyme-linked immunosorbent assay, immunofluorescence staining, and western blotting were performed to explore the potential interactive mechanism between Pannexin-1 channels and TLR2/TLR4/NF-κB-mediated signaling pathway. Cognitive and memory changes were investigated by the Morris water maze test. Results: Administration with LV-ShRNA-Panx1 markedly decreased the expression levels of TLR2/4/NF-κB pathway-related agents in the brain cortex and significantly ameliorated neurological cognitive and memory deficits in this SAH model. On the contrary, administration of LV-Panx1-EGFP elevated the expressions of TLR2/4/NF-κB pathway-related agents, which correlated with augmented neuronal apoptosis. Conclusion: Pannexin-1 channels may contribute to inflammatory response and neurobehavioral dysfunction through the TLR2/TLR4/NF-κB-mediated pathway signaling after SAH, suggesting a potential role of Pannexin-1 channels could be a potential therapeutic target for the treatment of SAH.


Journal of the Neurological Sciences | 2016

Elevated cerebrospinal fluid levels of thrombospondin-1 correlate with adverse clinical outcome in patients with aneurysmal subarachnoid hemorrhage.

Qiang Chen; Zhen-Nan Ye; Jing-Peng Liu; Zi-Huan Zhang; Chenhui Zhou; Ye Wang; Chun-Hua Hang

BACKGROUND Thrombospondin-1 (TSP-1) is a homotrimeric glycoprotein which modulates a wide range of biological functions. Elevated level of TSP-1 in plasma was reported to be correlated with intracerebral hemorrhage. Our study was designed to investigate the relationship between cerebrospinal fluid (CSF) TSP-1 levels and clinical outcomes in patients with aneurysmal subarachnoid hemorrhage (aSAH). METHODS CSF TSP-1 levels were measured in 31 aSAH patients on days 1-3, days 5-7 and days 8-10 after aSAH onset using enzyme-linked immunosorbent assay. Patients were under a close follow-up until death or completion of three months after aSAH. Binary logistic regression analyses were performed to determine independent risk factors for the clinical outcomes. RESULTS TSP-1 levels peaked on days 1-3 after aSAH, kept up high on days 5-7 and remained elevated until days 8-10 (p<0.05). Significant elevation of CSF TSP-1 levels were found in patients both with and without vasospasm. Modified Rankin Scale at 3months after aSAH showed a significant correlation with CSF TSP-1 levels on days 1-3 and days 5-7 (both p<0.01). Binary logistic regression analysis showed that higher TSP-1 level on days 1-3 (p<0.05) and on days 5-7 (p<0.05) was a predictive marker of cerebrovasospasm and poor outcome of patient with aSAH. CONCLUSIONS Upregulation of TSP-1 may involve in the pathological process of aSAH and might be a risk factor of future adverse prognosis of aSAH.


Human Pathology | 2017

RETRACTED: Downregulation of miR-204 expression correlates with poor clinical outcome of glioma patients

Zhen-Nan Ye; Jing-Peng Liu; Ling-Yun Wu; Xiang-Sheng Zhang; Zong Zhuang; Qiang Chen; Yue Lu; Ce-Gang Liu; Zi-Huan Zhang; Hua-Sheng Zhang; Wen-Zhong Hou; Chun-Hua Hang

Glioma is the most common type of malignant neoplasm in the central nervous system, with high incidence and mortality rate. MicroRNAs, as a class of small noncoding RNAs, play an important role in carcinogenesis and correlate with glioma diagnosis and prognosis. In this study, we investigated the microRNA-204 (miR-204) concentration in glioma tissues and its relation to the expression of ezrin and bcl-2 mRNA, as well as its potential predictive and prognostic values in glioma. The concentrations of miR-204 were significantly lower in glioma tissues than in nontumor brain tissues and also were lower in high-grade than in low-grade gliomas (World Health Organization grades III and IV versus grades I and II). The miR-204 concentration was inversely correlated with the ezrin and bcl-2 concentrations. The miR-204 concentration was classified as high or low according to the median value, and low miR-204 correlated with higher World Health Organization grade, larger tumor, and worse Karnofsky performance score. Kaplan-Meier survival analysis demonstrated that patients with low miR-204 expression had shorter progression-free survival and overall survival than patients with high miR-204 expression. In addition, univariate and multivariate analyses showed that miR-204 expression was an independent prognostic feature of overall survival and progression-free survival. In conclusion, our study indicates that miR-204 is downregulated in glioma and may be a biomarker of poor prognosis in patients with this cancer.


Behavioural Brain Research | 2018

Inhibition of leukotriene B4 synthesis protects against early brain injury possibly via reducing the neutrophil-generated inflammatory response and oxidative stress after subarachnoid hemorrhage in rats

Zhen-Nan Ye; Ling-Yun Wu; Jing-Peng Liu; Qiang Chen; Xiang-Sheng Zhang; Yue Lu; Mengliang Zhou; Wei Li; Zi-Huan Zhang; Da-Yong Xia; Zong Zhuang; Chun-Hua Hang

HIGHLIGHTSInhibition of LTB4 reduces neutrophil infiltration in the brain after SAH.Inhibition of LTB4 alleviates inflammation and oxidative stress after SAH.Inhibition of LTB4 alleviates early brain injury after SAH. ABSTRACT Leukotriene B4 (LTB4) is a highly potent neutrophil chemoattractant and neutrophils induces inflammatory response and oxidative stress when they recruit to and infiltrate in the injuried/inflamed site, such as the brain parenchyma after aneurysmal subarachnoid hemorrhage (SAH). This study is to investigate the potential effects of inhibition of LTB4 synthesis on neutrophil recruitment, inflammatory response and oxidative stress, as well as early brain injury (EBI) in rats after SAH. A pre‐chiasmatic cistern SAH model of rats was used in this experiment. SC 57461A was used to inhibit LTB4 synthesis via intracerebroventricular injection. The brain tissues of temporal lobe after SAH were analyzed. Neuronal injury, brain edema and neurological function were evaluated to investigate the development of EBI. We found that inhibition of LTB4 synthesis after SAH could reduce the level of myeloperoxidase, alleviate the inflammatory response and oxidative stress, and reduce neuronal death in the brain parenchyma, and ameliorate brain edema and neurological behavior impairment at 24 h after SAH. These results suggest that inhibition of LTB4 synthesis might alleviate EBI after SAH possibly via reducing the neutrophil‐generated inflammatory response and oxidative stress.


Brain Research | 2016

Expression and cell distribution of leukotriene B4 receptor 1 in the rat brain cortex after experimental subarachnoid hemorrhage

Zhen-Nan Ye; Zong Zhuang; Ling-Yun Wu; Jing-Peng Liu; Qiang Chen; Xiang-Sheng Zhang; Mengliang Zhou; Zi-Huan Zhang; Wei Li; Xiaoliang Wang; Chun-Hua Hang

Convincing evidence supports that nuclear factor kappa B (NF-κB)-meditated inflammation contributes to the adverse prognosis of aneurysmal subarachnoid hemorrhage (SAH), and pathologic neutrophil accumulation after SAH in the brain parenchyma enhances the inflammatory process. Leukotriene B4 (LTB4) is a highly potent lipid chemoattractant of neutrophils, and its biological effects are mediated primarily through the high-affinity LTB4 receptor 1 (BLT1). It is verified that NF-κB-dependent BLT1 mediates LTB4 signaling and LTB4 stimulates NF-κB-dependent inflammation via BLT1. This study aimed to determine the expression and cell distribution of BLT1 in the brain cortex after SAH and investigate the potential relationship between protein expressions of BLT1 and NF-κB. Male Sprague-Dawley rats were randomly assigned into sham group and SAH groups at 6h, 12h and on day 1, day 2 and day 3 (n=6 for each subgroup). SAH groups suffered experimental SAH by injecting 0.3ml autologous blood into the prechiasmatic cistern. BLT1 expression was measured by real-time PCR, western blot, immunohistochemistry and immunofluorescence. Nuclear expression of p65 protein, the major subunit of NF-κB, was also detected by western blot. Our data showed that the expression levels of BLT1 and nuclear p65 protein were both markedly increased after SAH. Moreover, there was a significant positive correlation between BLT1 and nuclear p65 protein expressions in the same specific time course. Double immunofluorescence staining showed that BLT1 were mainly expressed in neurons, microglia and endothelial cells rather than astrocytes after SAH. These results suggest that BLT1 may participate in the NF-κB-mediated inflammatory response after SAH, and there might be important implications for further studies using specific BLT1 antagonists to attenuate the NF-κB-mediated inflammation after SAH.


The FASEB Journal | 2018

Peroxiredoxin 1/2 protects brain against H2O2-induced apoptosis after subarachnoid hemorrhage

Yue Lu; Xiang-Sheng Zhang; Xiao-Ming Zhou; Yongyue Gao; Chun-Lei Chen; Jing-Peng Liu; Zhen-Nan Ye; Zi-Huan Zhang; Ling-Yun Wu; Wei Li; Chun-Hua Hang

Recent studies suggest that peroxiredoxin1/2 (Prx1/2) may be involved in the pathophysiology of post‐ischemic inflammatory responses in the brain. In this study, we assessed the distribution and function of Prx1/2 in mice after experimental subarachnoid hemorrhage (SAH). We investigated the distribution of Prx1/2 in the brains of mice both in vivo and in vitro using immunofluorescence staining. The expression of Prx1/2 after SAH was determined by Western blot. Adenanthin was used to inhibit Prx1/2 function, and Prx1/2 overexpression was achieved by injecting adeno‐associated virus. Oxidative stress and neuronal apoptosis were assessed both in vivo and in vitro. The neurologic function, inflammatory response, and related cellular signals were analyzed. The results showed that Prx1 was mainly expressed in astrocytes, and Prx2 was abundant in neurons. The expression of Prx1/2 was elevated after SAH, and their expression levels peaked before proinflammatory cytokines. Inhibiting Prx1/2 promoted neuronal apoptosis by increasing the hydrogen peroxide (H2O2) levels via the apoptosis signal‐regulating kinase 1/p38 pathway. By contrast, overexpression of Prx1/2 attenuated oxidative stress and neuronal apoptosis after SAH. Thus, early expression of Prx1/2 may protect the brain from oxidative damage after SAH and may provide a novel target for treating SAH.—Lu, Y., Zhang, X.‐S., Zhou, X.‐M., Gao, Y.‐Y., Chen, C.‐L., Liu, J.‐P., Ye, Z.‐N., Zhang, Z.‐H., Wu, L.‐Y., Li, W., Hang, C.‐H. Peroxiredoxin 1/2 protects brain against H2O2‐induced apoptosis after subarachnoid hemorrhage. FASEB J. 33, 3051–3062 (2019). www.fasebj.org

Collaboration


Dive into the Jing-Peng Liu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhen-Nan Ye

Southern Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zi-Huan Zhang

Second Military Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qiang Chen

Southern Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge