Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jing Zhuang is active.

Publication


Featured researches published by Jing Zhuang.


BMC Plant Biology | 2014

De novo assembly and transcriptome characterization: novel insights into catechins biosynthesis in Camellia sinensis

Zhi-Jun Wu; Xinghui Li; Zhi-Wei Liu; Zhi-Sheng Xu; Jing Zhuang

BackgroundTea is a popular natural non-alcoholic beverage consumed worldwide due to its bioactive ingredients, particularly catechins (flavan-3-ols). Catechins not only contribute to tea quality but also serve important functions in the anti-stress regulation of secondary metabolic pathways. However, the percentages of various catechins are different among tea plant [Camellia sinensis (L.) O. Kuntze] cultivars. This study aimed to elucidate the biosynthetic mechanism of catechins. Transcriptomes from leaf tissues of four tea plant cultivars, ‘Yunnanshilixiang’, ‘Chawansanhao’, ‘Ruchengmaoyecha’, and ‘Anjibaicha’, were sequenced using the high-throughput sequencing platform Illumina HiSeq™ 2000. De novo assemble were also performed. Catechins contents were measured through reversed-phase high-performance liquid chromatography (RP-HPLC), and the biosynthetic pathway was also surveyed.ResultsWe constructed a unified unigene database. A total of 146,342 pairs of putative orthologs from the four tea plant cultivars, ‘Yunnanshilixiang’, ‘Chawansanhao’, ‘Ruchengmaoyecha’, and ‘Anjibaicha’ were generated. Approximately 68,890 unigenes (47.1%) were aligned to the sequences of seven public databases with a cut-off E-value of 1E-5. A total of 217 differentially expressed genes were found through RPKM values, and 150 unigenes were assigned to the flavonoid biosynthetic pathway using the integrated function annotation. The (−)-EGC and (−)-EC contents were significantly lower and the (+)-GC and (+)-C contents were abnormally higher in ‘Ruchengmaoyecha’ than in ‘Yunnanshilixiang’, ‘Chawansanhao’, and ‘Anjibaicha’. The proportion of catechins was confirmed by selecting critical genes (ANS, ANR, and LAR) for qRT-PCR analysis.ConclusionsThis study provided a global survey of transcriptomes from four tea plant cultivars and serves as an available resource of genetic diversity. The analyses of transcriptome profiles and physiological indicators not only identified the putative genes involved in the flavonoid biosynthetic pathway but also provided some novel insights for the mechanisms of catechins biosynthesis.


Scientific Reports | 2016

Selection of suitable reference genes for qRT-PCR normalization during leaf development and hormonal stimuli in tea plant (Camellia sinensis).

Zhi-Jun Wu; Chang Fu Tian; Qian Jiang; Xinghui Li; Jing Zhuang

Tea plant (Camellia sinensis) leaf is an important non-alcoholic beverage resource. The application of quantitative real time polymerase chain reaction (qRT-PCR) has a profound significance for the gene expression studies of tea plant, especially when applied to tea leaf development and metabolism. In this study, nine candidate reference genes (i.e., CsACT7, CsEF-1α, CseIF-4α, CsGAPDH, CsPP2A, CsSAND, CsTBP, CsTIP41, and CsTUB) of C. sinensis were cloned. The quantitative expression data of these genes were investigated in five tea leaf developmental stages (i.e., 1st, 2nd, 3rd, 4th, and older leaves) and normal growth tea leaves subjected to five hormonal stimuli (i.e., ABA, GA, IAA, MeJA, and SA), and gene expression stability was calculated using three common statistical algorithms, namely, geNorm, NormFinder, and Bestkeeper. Results indicated that CsTBP and CsTIP41 were the most stable genes in tea leaf development and CsTBP was the best gene under hormonal stimuli; by contrast, CsGAPDH and CsTUB genes showed the least stability. The gene expression profile of CsNAM gene was analyzed to confirm the validity of the reference genes in this study. Our data provide basis for the selection of reference genes for future biological research in the leaf development and hormonal stimuli of C. sinensis.


Functional & Integrative Genomics | 2015

Transcriptome-based discovery of AP2/ERF transcription factors related to temperature stress in tea plant (Camellia sinensis)

Zhi-Jun Wu; Xinghui Li; Zhi-Wei Liu; Hui Li; Yong-Xin Wang; Jing Zhuang

Tea plant (Camellia sinensis) is an important natural resource for the global supply of non-alcoholic beverage production. The extension of tea plant cultivation is challenged by biotic and abiotic stresses. Transcription factors (TFs) of the APETALA 2 (AP2)/ethylene-responsive factor (ERF) family are involved in growth and anti-stresses through multifaceted transcriptional regulation in plants. This study comprehensively analyzed AP2/ERF family TFs from C. sinensis on the basis of the transcriptome sequencing data of four tea plant cultivars, namely, ‘Yunnanshilixiang’, ‘Chawansanhao’, ‘Ruchengmaoyecha’, and ‘Anjibaicha’. A total of 89 putative AP2/ERF transcription factors with full-length AP2 domain were identified from C. sinensis and classified into five subfamilies, namely, AP2, dehydration-responsive-element-binding (DREB), ERF, related to ABI3/VP (RAV), and Soloist. All identified CsAP2/ERF genes presented relatively stable expression levels in the four tea plant cultivars. Many groups also showed cultivar specificity. Five CsAP2/ERF genes from each AP2/ERF subfamily (DREB, ERF, AP2, and RAV) were related to temperature stresses; these results indicated that AP2/ERF TFs may play important roles in abnormal temperature stress response in C. sinensis.


Molecular Genetics and Genomics | 2016

Transcriptome-wide identification of Camellia sinensis WRKY transcription factors in response to temperature stress

Zhi-Jun Wu; Xinghui Li; Zhi-Wei Liu; Hui Li; Yong-Xin Wang; Jing Zhuang

Tea plant [Camellia sinensis (L.) O. Kuntze] is a leaf-type healthy non-alcoholic beverage crop, which has been widely introduced worldwide. Tea is rich in various secondary metabolites, which are important for human health. However, varied climate and complex geography have posed challenges for tea plant survival. The WRKY gene family in plants is a large transcription factor family that is involved in biological processes related to stress defenses, development, and metabolite synthesis. Therefore, identification and analysis of WRKY family transcription factors in tea plant have a profound significance. In the present study, 50 putative C. sinensis WRKY proteins (CsWRKYs) with complete WRKY domain were identified and divided into three Groups (Group I-III) on the basis of phylogenetic analysis results. The distribution of WRKY family transcription factors among plantae, fungi, and protozoa showed that the number of WRKY genes increased in higher plant, whereas the number of these genes did not correspond to the evolutionary relationships of different species. Structural feature and annotation analysis results showed that CsWRKY proteins contained WRKYGQK/WRKYGKK domains and C2H2/C2HC-type zinc-finger structure: D-X18-R-X1-Y-X2-C-X4-7-C-X23-H motif; CsWRKY proteins may be associated with the biological processes of abiotic and biotic stresses, tissue development, and hormone and secondary metabolite biosynthesis. Temperature stresses suggested that the candidate CsWRKY genes were involved in responses to extreme temperatures. The current study established an extensive overview of the WRKY family transcription factors in tea plant. This study also provided a global survey of CsWRKY transcription factors and a foundation of future functional identification and molecular breeding.


PLOS ONE | 2016

Transcriptome-Wide Identification and Expression Analysis of the NAC Gene Family in Tea Plant [Camellia sinensis (L.) O. Kuntze]

Yong-Xin Wang; Zhi-Wei Liu; Zhi-Jun Wu; Hui Li; Jing Zhuang

In plants, the NAC (NAM-ATAF1/2-CUC) family of proteins constitutes several transcription factors and plays vital roles in diverse biological processes, such as growth, development, and adaption to adverse factors. Tea, as a non-alcoholic drink, is known for its bioactive ingredients and health efficacy. Currently, knowledge about NAC gene family in tea plant remains very limited. In this study, a total of 45 CsNAC genes encoding NAC proteins including three membrane-bound members were identified in tea plant through transcriptome analysis. CsNAC factors and Arabidopsis counterparts were clustered into 17 subgroups after phylogenetic analysis. Conserved motif analysis revealed that CsNAC proteins with a close evolutionary relationship possessed uniform or similar motif compositions. The distribution of NAC family MTFs (membrane-associated transcription factors) among higher plants of whose genome-wide has been completed revealed that the existence of doubled TMs (transmembrane motifs) may be specific to fabids. Transcriptome analysis exhibited the expression profiles of CsNAC genes in different tea plant cultivars under non-stress conditions. Nine CsNAC genes, including the predicted stress-related and membrane-bound genes, were examined through qRT-PCR (quantitative real time polymerase chain reaction) in two tea plant cultivars, namely, ‘Huangjinya’ and ‘Yingshuang’. The expression patterns of these genes were investigated in different tissues (root, stem, mature leaf, young leaf and bud) and under diverse environmental stresses (drought, salt, heat, cold and abscisic acid). Several CsNAC genes, including CsNAC17 and CsNAC30 that are highly orthologous to known stress-responsive ANAC072/RD26 were identified as highly responsive to abiotic stress. This study provides a global survey of tea plant NAC proteins, and would be helpful for the improvement of stress resistance in tea plant via genetic engineering.


Frontiers in Plant Science | 2017

L-Theanine Content and Related Gene Expression: Novel Insights into Theanine Biosynthesis and Hydrolysis among Different Tea Plant (Camellia sinensis L.) Tissues and Cultivars

Zhi-Wei Liu; Zhi-Jun Wu; Hui Li; Yong-Xin Wang; Jing Zhuang

L-Theanine content has tissues and cultivars specificity in tea plant (Camellia sinensis L.), the correlations of theanine metabolic related genes expression profiles with theanine contents were explored in this study. L-theanine contents in the bud and 1st leaf, 2nd leaf, 3rd leaf, old leaf, stem, and lateral root were determined by HPLC from three C. sinensis cultivars, namely ‘Huangjinya’, ‘Anjibaicha’, and ‘Yingshuang’, respectively. The theanine contents in leaves and root of ‘Huangjinya’ were the highest, followed by ‘Anjibaicha’, and ‘Yingshuang’. The theanine contents in the leaves reduced as the leaf mature gradually, and in stem were the least. Seventeen genes encoding enzymes involved in theanine metabolism were identified from GenBank and our tea transcriptome database, including CsTS1, CsTS2, CsGS1, CsGS2, CsGOGAT-Fe, CsGOGAT-NAD(P)H, CsGDH1, CsGDH2, CsALT, CsSAMDC, CsADC, CsCuAO, CsPAO, CsNiR, CsNR, CsGGT1, and CsGGT3. The transcript profiles of those seventeen genes in the different tissues of three tea plant cultivars were analyzed comparatively. Among the different cultivars, the transcript levels of most selected genes in ‘Huangjinya’ were significantly higher than that in the ‘Anjibaicha’ and ‘Yingshuang’. Among the different tissues, the transcript levels of CsTS2, CsGS1, and CsGDH2 almost showed positive correlation with the theanine contents, while the other genes showed negative correlation with the theanine contents in most cases. The theanine contents showed correlations with related genes expression levels among cultivars and tissues of tea plant, and were determined by the integrated effect of the metabolic related genes.


Scientific Reports | 2017

Transcriptomic analysis of the biosynthesis, recycling, and distribution of ascorbic acid during leaf development in tea plant ( Camellia sinensis (L.) O. Kuntze)

Hui Li; Wei Huang; Guang-Long Wang; Wenli Wang; Xin Cui; Jing Zhuang

Ascorbic acid (AsA), known as vitamin C, is an essential nutrient for humans and mainly absorbed from food. Tea plant (Camellia sinensis (L.) O. Kuntze) leaves can be a dietary source of AsA for humans. However, experimental evidence on the biosynthesis, recycling pathway and distribution of AsA during leaf development in tea plants is unclear. To gain insight into the mechanism and distribution of AsA in the tea plant leaf, we identified 18 related genes involved in AsA biosynthesis and recycling pathway based on the transcriptome database of tea plants. Tea plant leaves were used as samples at different developmental stages. AsA contens in tea plant leaves at three developmental stages were measured by reversed-phase high-performance liquid chromatography (RP-HPLC). The correlations between expression levels of these genes and AsA contents during the development of tea plant leaves were discussed. Results indicated that the l-galactose pathway might be the primary pathway of AsA biosynthesis in tea plant leaves. CsMDHAR and CsGGP might play a regulatory role in AsA accumulation in the leaves of three cultivars of tea plants. These findings may provide a further glimpse to improve the AsA accumulation in tea plants and the commercial quality of tea.


Comparative and Functional Genomics | 2016

Transcriptome-Based Analysis of Dof Family Transcription Factors and Their Responses to Abiotic Stress in Tea Plant (Camellia sinensis)

Hui Li; Wei Huang; Zhi-Wei Liu; Yong-Xin Wang; Jing Zhuang

Tea plant (Camellia sinensis (L.) O. Kuntze) is affected by abiotic stress during its growth and development. DNA-binding with one finger (Dof) transcription factors (TFs) play important roles in abiotic stress tolerance of plants. In this study, a total of 29 putative Dof TFs were identified based on transcriptome of tea plant, and the conserved domains and common motifs of these CsDof TFs were predicted and analyzed. The 29 CsDof proteins were divided into 7 groups (A, B1, B2, C1, C2.1, C2.2, and D2), and the interaction networks of Dof proteins in C. sinensis were established according to the data in Arabidopsis. Gene expression was analyzed in “Yingshuang” and “Huangjinya” under four experimental stresses by qRT-PCR. CsDof genes were expressed differentially and related to different abiotic stress conditions. In total, our results might suggest that there is a potential relationship between CsDof factors and tea plant stress resistance.


Journal of Agricultural and Food Chemistry | 2017

CsGOGAT Is Important in Dynamic Changes of Theanine Content in Postharvest Tea Plant Leaves under Different Temperature and Shading Spreadings

Zhi-Wei Liu; Hui Li; Wenli Wang; Zhi-Jun Wu; Xin Cui; Jing Zhuang

We analyzed the changes of theanine content in postharvest tea leaves under high temperature (38 °C), low temperature (4 °C), and shading spreadings by using ultrahigh-performance liquid chromatography. The differentially expressed proteins (DEPs), CsFd-GOGAT and CsNADH-GOGAT, which are involved in theanine biosynthesis pathway, were identified from the corresponding proteome data. The protein-protein interactions of CsFd-GOGAT and CsNADH-GOGAT, CsTS1, or CsNiR were verified by yeast two-hybrid technology. The expression profiles of 17 genes in theanine metabolism, including CsFd-GOGAT and CsNADH-GOGAT, were analyzed by quantitative real-time polymerase chain reaction. The correlations between the dynamic changes of theanine content and expression profiles of related genes and DEPs were analyzed. This study preliminarily proved the importance of CsGOGAT in dynamic changes of theanine content in postharvest tea leaves during spreading.


Scientific Reports | 2018

Genome-wide identification and expression analysis of GRAS family transcription factors in tea plant ( Camellia sinensis )

Yong-Xin Wang; Zhi-Wei Liu; Zhi-Jun Wu; Hui Li; Wenli Wang; Xin Cui; Jing Zhuang

GRAS proteins are important transcription factors that play multifarious roles in regulating the growth and development as well as stress responses of plants. Tea plant is an economically important leaf -type beverage crop. Information concerning GRAS family transcription factors in tea plant is insufficient. In this study, 52 CsGRAS genes encoding GRAS proteins were identified from tea plant genome database. Phylogenetic analysis of the identified GRAS proteins from tea plant, Arabidopsis, and rice divided these proteins into at least 13 subgroups. Conserved motif analysis revealed that the gene structure and motif compositions of the proteins were considerably conserved among the same subgroup. Functional divergence analysis indicated that the shifted evolutionary rate might act as a major evolutionary force driving subfamily-specific functional diversification. Transcriptome analysis showed that the transcriptional levels of CsGRAS genes under non-stress conditions varied among different tea plant cultivars. qRT-PCR analysis revealed tissue and development stage-specific expression patterns of CsGRAS genes in tea plant. The expression patterns of CsGRAS genes in response to abiotic stresses and gibberellin treatment suggested the possible multiple functions of these genes. This study provides insights into the potential functions of GRAS genes.

Collaboration


Dive into the Jing Zhuang's collaboration.

Top Co-Authors

Avatar

Zhi-Jun Wu

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Hui Li

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Zhi-Wei Liu

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yong-Xin Wang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Wenli Wang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xinghui Li

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xin Cui

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Rui-Min Teng

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Wei Huang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Wei Shen

Nanjing Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge