Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jingcheng Yu is active.

Publication


Featured researches published by Jingcheng Yu.


Endocrinology | 2011

Pioglitazone Induces a Proadipogenic Antitumor Response in Mice with PAX8-PPARγ Fusion Protein Thyroid Carcinoma

Melissa E. Dobson; Ericka Diallo-Krou; Vladimir Grachtchouk; Jingcheng Yu; Lesley A. Colby; John E. Wilkinson; Thomas J. Giordano; Ronald J. Koenig

Approximately 35% of follicular thyroid carcinomas harbor a chromosomal translocation that results in expression of a paired box gene 8-peroxisome proliferator-activated receptor γ gene (PPARγ) fusion protein (PPFP). To better understand the oncogenic role of PPFP and its relationship to endogenous PPARγ, we generated a transgenic mouse model that combines Cre-dependent PPFP expression (PPFP;Cre) with homozygous deletion of floxed Pten (PtenFF;Cre), both thyroid specific. Although neither PPFP;Cre nor PtenFF;Cre mice develop thyroid tumors, the combined PPFP;PtenFF;Cre mice develop metastatic thyroid cancer, consistent with patient data that PPFP is occasionally found in benign thyroid adenomas and that PPFP carcinomas have increased phosphorylated AKT/protein kinase B. We then tested the effects of the PPARγ agonist pioglitazone in our mouse model. Pioglitazone had no effect on PtenFF;Cre mouse thyroids. However, the thyroids in pioglitazone-fed PPFP;PtenFF;Cre mice decreased 7-fold in size, and metastatic disease was prevented. Remarkably, pioglitazone caused an adipogenic response in the PPFP;PtenFF;Cre thyroids characterized by lipid accumulation and the induction of a broad array of adipocyte PPARγ target genes. These data indicate that, in the presence of pioglitazone, PPFP has PPARγ-like activity that results in trans-differentiation of thyroid carcinoma cells into adipocyte-like cells. Furthermore, the data predict that pioglitazone will be therapeutic in patients with PPFP-positive carcinomas.


Endocrinology | 2009

Paired Box Gene 8-Peroxisome Proliferator-Activated Receptor-γ Fusion Protein and Loss of Phosphatase and Tensin Homolog Synergistically Cause Thyroid Hyperplasia in Transgenic Mice

Ericka Diallo-Krou; Jingcheng Yu; Lesley A. Colby; Ken Inoki; John E. Wilkinson; Dafydd G. Thomas; Thomas J. Giordano; Ronald J. Koenig

Approximately 35% of follicular thyroid carcinomas and a small fraction of follicular adenomas are associated with a t(2;3)(q13;p25) chromosomal translocation that fuses paired box gene 8 (PAX8) with the peroxisome proliferator-activated receptor-gamma gene (PPARG), resulting in expression of a PAX8-PPARgamma fusion protein, PPFP. The mechanism by which PPFP contributes to follicular thyroid neoplasia is poorly understood. Therefore, we have created mice with thyroid-specific expression of PPFP. At 1 yr of age, 25% of PPFP mice demonstrate mild thyroid hyperplasia. We bred these mice to mice with thyroid-specific single-allele deletion of the tumor suppressor Pten, denoted ThyPten(+/-). In humans, PTEN deletion is associated with follicular adenomas and carcinomas, and in mice, deletion of one Pten allele causes mild thyroid hyperplasia. We found that PPFP synergizes with ThyPten(+/-) to cause marked thyroid hyperplasia, but carcinomas were not observed. AKT phosphorylation was increased as expected in the ThyPten(+/-) thyroids, and also was increased in the PPFP thyroids and in human PPFP follicular cancers. Staining for the cell cycle marker Ki-67 was increased in the PPFP, ThyPten(+/-), and PPFP;ThyPten(+/-) thyroids compared with wild-type thyroids. Several genes with increased expression in PPFP cancers also were found to be increased in the thyroids of PPFP mice. This transgenic mouse model of thyroidal PPFP expression exhibits properties similar to those of PPFP thyroid cancers. However, the mice develop thyroid hyperplasia, not carcinoma, suggesting that additional events are required to cause follicular thyroid cancer.


BMC Nephrology | 2008

Podocyte specific knock out of selenoproteins does not enhance nephropathy in streptozotocin diabetic C57BL/6 mice

Marsha N. Blauwkamp; Jingcheng Yu; Mary Lee Schin; Kathleen Burke; Marla J. Berry; Bradley A. Carlson; Frank C. Brosius; Ronald J. Koenig

BackgroundSelenoproteins contain selenocysteine (Sec), commonly considered the 21st genetically encoded amino acid. Many selenoproteins, such as the glutathione peroxidases and thioredoxin reductases, protect cells against oxidative stress by functioning as antioxidants and/or through their roles in the maintenance of intracellular redox balance. Since oxidative stress has been implicated in the pathogenesis of diabetic nephropathy, we hypothesized that selenoproteins protect against this complication of diabetes.MethodsC57BL/6 mice that have a podocyte-specific inability to incorporate Sec into proteins (denoted in this paper as PodoTrsp-/-) and control mice were made diabetic by intraperitoneal injection of streptozotocin, or were injected with vehicle. Blood glucose, body weight, microalbuminuria, glomerular mesangial matrix expansion, and immunohistochemical markers of oxidative stress were assessed.ResultsAfter 3 and 6 months of diabetes, control and PodoTrsp-/- mice had similar levels of blood glucose. There were no differences in urinary albumin/creatinine ratios. Periodic acid-Schiff staining to examine mesangial matrix expansion also demonstrated no difference between control and PodoTrsp-/- mice after 6 months of diabetes, and there were no differences in immunohistochemical stainings for nitrotyrosine or NAD(P)H dehydrogenase, quinone 1.ConclusionLoss of podocyte selenoproteins in streptozotocin diabetic C57BL/6 mice does not lead to increased oxidative stress as assessed by nitrotyrosine and NAD(P)H dehydrogenase, quinone 1 immunostaining, nor does it lead to worsening nephropathy.


Endocrine-related Cancer | 2013

The thyroid cancer PAX8–PPARG fusion protein activates Wnt/TCF-responsive cells that have a transformed phenotype

Dang Vu-Phan; Vladimir Grachtchouk; Jingcheng Yu; Lesley A. Colby; Max S. Wicha; Ronald J. Koenig

A chromosomal translocation results in the production of a paired box 8-peroxisome proliferator-activated receptor gamma (PAX8-PPARG) fusion protein (PPFP) in ∼35% of follicular thyroid carcinomas. To examine the role of PPFP in thyroid oncogenesis, the fusion protein was stably expressed in the non-transformed rat thyroid cell line PCCL3. PPFP conferred on PCCL3 cells the ability to invade through Matrigel and to form colonies in anchorage-independent conditions. PPFP also increased the fraction of cells with Wnt/TCF-responsive green fluorescent protein reporter gene expression. This Wnt/TCF-activated population was enriched for colony-forming and invading cells. These actions of PPFP required a functional PPARG DNA binding domain (DBD) within PPFP and were further stimulated by PPARG agonists. These data indicate that PPFP, through its PPARG DBD, induces Wnt/TCF pathway activation in a subpopulation of cells, and these cells have properties of cellular transformation including increased invasiveness and anchorage-independent growth.


Oncotarget | 2015

Genomic binding and regulation of gene expression by the thyroid carcinoma-associated PAX8-PPARG fusion protein

Yanxiao Zhang; Jingcheng Yu; Chee Lee; Bin Xu; Maureen A. Sartor; Ronald J. Koenig

A chromosomal translocation results in production of an oncogenic PAX8-PPARG fusion protein (PPFP) in thyroid carcinomas. PAX8 is a thyroid transcription factor, and PPARG is a transcription factor that plays important roles in adipocytes and macrophages. PPFP retains the DNA binding domains of both proteins; however, the genomic binding sites of PPFP have not been identified, and only limited data exist to characterize gene expression in PPFP thyroid carcinomas. Therefore, the oncogenic function of PPFP is poorly understood. We expressed PPFP in PCCL3 rat thyroid cells and used ChIP-seq to identify PPFP genomic binding sites (PPFP peaks) and RNA-seq to characterize PPFP-dependent gene expression. PPFP peaks (~20,000) include known PAX8 and PPARG binding sites and are enriched with both motifs, indicating that both DNA binding domains are functional. PPFP binds to and regulates many genes involved in cancer-related processes. In PCCL3 thyroid cells, PPFP binds to adipocyte PPARG target genes in preference to macrophage PPARG target genes, consistent with the pro-adipogenic nature of PPFP and its ligand pioglitazone in thyroid cells. PPFP induces oxidative stress in thyroid cells, and pioglitazone increases susceptibility to further oxidative stress. Our data highlight the complexity of PPFP as a transcription factor and the numerous ways that it regulates thyroid oncogenesis.


Oncotarget | 2017

Genomic binding of PAX8-PPARG fusion protein regulates cancer-related pathways and alters the immune landscape of thyroid cancer

Yanxiao Zhang; Jingcheng Yu; Vladimir Grachtchouk; Tingting Qin; Carey N. Lumeng; Maureen A. Sartor; Ronald J. Koenig

PAX8-PPARG fusion protein (PPFP) results from a t(2;3)(q13;p25) chromosomal translocation, is found in 30% of follicular thyroid carcinomas, and demonstrates oncogenic capacity in transgenic mice. A PPARG ligand, pioglitazone, is highly therapeutic in mice with PPFP thyroid cancer. However, only limited data exist to characterize the binding sites and oncogenic function of PPFP, or to explain the observed therapeutic effect of pioglitazone. Here we used our previously characterized transgenic mouse model of PPFP follicular thyroid carcinoma to identify PPFP binding sites in vivo using ChIP-seq, and to distinguish genes and pathways regulated directly or indirectly by PPFP with and without pioglitazone treatment via integration with RNA-seq data. PPFP bound to DNA regions containing the PAX8 and/or the PPARG motif, near genes involved in lipid metabolism, the cell cycle, apoptosis, and cell motility; the binding site distribution was highly concordant with our previous study in a rat PCCL3 cell line. Most strikingly, pioglitazone induced an immune cell infiltration including macrophages and T cells only in the presence of PPFP, which may be central to its therapeutic effect.


Endocrinology | 2018

Thyroid-Specific PPARγ Deletion Is Benign in the Mouse

Jingcheng Yu; Ronald J. Koenig

Peroxisome proliferator-activated receptor γ (PPARγ) is widely expressed at low levels and regulates many physiological processes. In mice and humans, there is evidence that PPARγ can function as a tumor suppressor. A PAX8-PPARγ fusion protein (PPFP) is oncogenic in a subset of thyroid cancers, suggesting that inhibition of endogenous PPARγ function by the fusion protein could contribute to thyroid oncogenesis. However, the function of PPARγ within thyrocytes has never been directly tested. Therefore, we have created a thyroid-specific genetic knockout of murine Pparg and have studied thyroid biology in these mice. Thyroid size and histology, the expression of thyroid-specific genes, and serum T4 levels all are unaffected by loss of thyroidal PPARγ expression. PPFP thyroid cancers have increased activation of AKT, and mice with thyroid-specific expression of PPFP combined with thyroid-specific loss of PTEN (a negative regulator of AKT) develop thyroid cancer. Therefore we created mice with combined thyroid-specific deletions of Pparg and Pten to test if there is oncogenic synergy between these deletions. Pten deletion alone results in benign thyroid hyperplasia, and this is unchanged when combined with deletion of Pparg. We conclude that, at least in the contexts studied, thyrocyte PPARγ does not play a significant role in the development or function of the thyroid and does not function as a tumor suppressor.


Journal of Biological Chemistry | 2016

Adipogenic Differentiation of Thyroid Cancer Cells Through the Pax8-PPARγ Fusion Protein Is Regulated by Thyroid Transcription Factor 1 (TTF-1)

Bin Xu; Michael O'Donnell; Jeffrey O'Donnell; Jingcheng Yu; Yanxiao Zhang; Maureen A. Sartor; Ronald J. Koenig

A subset of thyroid carcinomas contains a t(2;3)(q13;p25) chromosomal translocation that fuses paired box gene 8 (PAX8) with the peroxisome proliferator-activated receptor γ gene (PPARG), resulting in expression of a PAX8-PPARγ fusion protein, PPFP. We previously generated a transgenic mouse model of PPFP thyroid carcinoma and showed that feeding the PPARγ agonist pioglitazone greatly decreased the size of the primary tumor and prevented metastatic disease in vivo. The antitumor effect correlates with the fact that pioglitazone turns PPFP into a strongly PPARγ-like molecule, resulting in trans-differentiation of the thyroid cancer cells into adipocyte-like cells that lose malignant character as they become more differentiated. To further study this process, we performed cell culture experiments with thyrocytes from the PPFP mouse thyroid cancers. Our data show that pioglitazone induced cellular lipid accumulation and the expression of adipocyte marker genes in the cultured cells, and shRNA knockdown of PPFP eliminated this pioglitazone effect. In addition, we found that PPFP and thyroid transcription factor 1 (TTF-1) physically interact, and that these transcription factors bind near each other on numerous target genes. TTF-1 knockdown and overexpression studies showed that TTF-1 inhibits PPFP target gene expression and impairs adipogenic trans-differentiation. Surprisingly, pioglitazone repressed TTF-1 expression in PPFP-expressing thyrocytes. Our data indicate that TTF-1 interacts with PPFP to inhibit the pro-adipogenic response to pioglitazone, and that the ability of pioglitazone to decrease TTF-1 expression contributes to its pro-adipogenic action.


Journal of Biological Chemistry | 2000

Regulation of Hepatocyte Thyroxine 5′-Deiodinase by T3 and Nuclear Receptor Coactivators as a Model of the Sick Euthyroid Syndrome

Jingcheng Yu; Ronald J. Koenig


Endocrinology | 2006

Induction of Type 1 Iodothyronine Deiodinase to Prevent the Nonthyroidal Illness Syndrome in Mice

Jingcheng Yu; Ronald J. Koenig

Collaboration


Dive into the Jingcheng Yu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bin Xu

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge