Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jingdong Shan is active.

Publication


Featured researches published by Jingdong Shan.


Human Molecular Genetics | 2010

Wnt4/5a signalling coordinates cell adhesion and entry into meiosis during presumptive ovarian follicle development

Florence Naillat; Renata Prunskaite-Hyyryläinen; Ilkka Pietilä; Raija Sormunen; Tiina Jokela; Jingdong Shan; Seppo Vainio

Germ cells are the foundation of an individual, since they generate the gametes and provide the unique genome established through meiosis. The sex-specific fate of the germline in mammals is thought to be controlled by somatic signals, which are still poorly characterized. We demonstrate here that somatic Wnt signalling is crucial for the control of female germline development. Wnt-4 maintains germ cell cysts and early follicular gene expression and provides a female pattern of E-cadherin and beta-catenin expression within the germ cells. In addition, we find that Stra8 expression is downregulated and the Cyp26b1 gene is expressed ectopically in the partially masculinized Wnt-4-deficient ovary. Wnt-4 may control meiosis via these proteins since the Cyp26b1 enzyme is known to degrade retinoic acid (RA) and inhibit meiosis in the male embryo, and Stra8 induces meiosis in the female through RA. Reintroduction of a Wnt-4 signal to the partially masculinized embryonic ovary, in fact, rescues the female property to a certain degree, as seen by inhibition of Cyp26b1 and induction of Irx3 gene expression. Wnt-4 deficiency allows only 20% of the germ cells to initiate meiosis in the ovary, whereas meiosis is inhibited completely in the Wnt-4/Wnt-5a double mutant. These findings indicate a critical role for Wnt signalling in meiosis. Thus, the Wnt signals are important somatic cell signals that coordinate presumptive female follicle development.


Development | 2013

HNF1B controls proximal-intermediate nephron segment identity in vertebrates by regulating Notch signalling components and Irx1/2

Claire Heliot; Audrey Desgrange; Isabelle Buisson; Renata Prunskaite-Hyyryläinen; Jingdong Shan; Seppo Vainio; Muriel Umbhauer; Silvia Cereghini

The nephron is a highly specialised segmented structure that provides essential filtration and resorption renal functions. It arises by formation of a polarised renal vesicle that differentiates into a comma-shaped body and then a regionalised S-shaped body (SSB), with the main prospective segments mapped to discrete domains. The regulatory circuits involved in initial nephron patterning are poorly understood. We report here that HNF1B, a transcription factor known to be involved in ureteric bud branching and initiation of nephrogenesis, has an additional role in segment fate acquisition. Hnf1b conditional inactivation in murine nephron progenitors results in rudimentary nephrons comprising a glomerulus connected to the collecting system by a short tubule displaying distal fates. Renal vesicles develop and polarise normally but fail to progress to correctly patterned SSBs. Major defects are evident at late SSBs, with altered morphology, reduction of a proximo-medial subdomain and increased apoptosis. This is preceded by strong downregulation of the Notch pathway components Lfng, Dll1 and Jag1 and the Irx1/2 factors, which are potential regulators of proximal and Henles loop segment fates. Moreover, HNF1B is recruited to the regulatory sequences of most of these genes. Overexpression of a HNF1B dominant-negative construct in Xenopus embryos causes downregulation specifically of proximal and intermediate pronephric segment markers. These results show that HNF1B is required for the acquisition of a proximo-intermediate segment fate in vertebrates, thus uncovering a previously unappreciated function of a novel SSB subcompartment in global nephron segmentation and further differentiation.


Nephrology Dialysis Transplantation | 2011

Mouse model of proximal tubule endocytic dysfunction

Kathrin Weyer; Tina Storm; Jingdong Shan; Seppo Vainio; Renata Kozyraki; Pierre J. Verroust; Erik Ilsø Christensen; Rikke Nielsen

BACKGROUND Several studies have indicated the central role of the megalin/cubilin multiligand endocytic receptor complex in protein reabsorption in the kidney proximal tubule. However, the poor viability of the existing megalin-deficient mice precludes further studies and comparison of homogeneous groups of mice. METHODS Megalin- and/or cubilin-deficient mice were generated using a conditional Cre-loxP system, where the Cre gene is driven by the Wnt4 promoter. Kidney tissues from the mice were analysed for megalin and cubilin expression by quantitative reverse transcription-polymerase chain reaction, western blotting and immunohistochemistry. Renal albumin uptake was visualized by immunohistochemistry. Twenty-four-hour urine samples were collected in metabolic cages and analysed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and western blotting. Urinary albumin/creatinine ratios were measured by ELISA and the alkaline picrate method. RESULTS The Meg(lox/lox);Cre(+), Cubn(lox/lox);Cre(+) and Meg(lox/lox), Cubn(lox/lox);Cre(+) mice were all viable, fertile and developed normal kidneys. Megalin and/or cubilin expression, assessed by immunohistology and western blotting, was reduced by >89%. Consistent with this observation, the mice excreted megalin and cubilin ligands such as transferrin and albumin in addition to low-molecular weight proteins. We further show that megalin/cubilin double-deficient mice excrete albumin with an average of 1.45 ± 0.54 mg/day, suggesting a very low albumin concentration in the glomerular ultrafiltrate. CONCLUSIONS We report here the efficient genetic ablation of megalin, cubilin or both, using a Cre transgene driven by the Wnt4 promoter. The viable megalin/cubilin double-deficient mice now allow for detailed large-scale group analysis, and we anticipate that the mice will be of great value as an animal model for proximal tubulopathies with disrupted endocytosis.


The EMBO Journal | 2015

Progesterone and Wnt4 control mammary stem cells via myoepithelial crosstalk

Renuga Devi Rajaram; Duje Buric; Marian Caikovski; Ayyakkannu Ayyanan; Jacques Rougemont; Jingdong Shan; Seppo Vainio; Ozden Yalcin-Ozuysal; Cathrin Brisken

Ovarian hormones increase breast cancer risk by poorly understood mechanisms. We assess the role of progesterone on global stem cell function by serially transplanting mouse mammary epithelia. Progesterone receptor (PR) deletion severely reduces the regeneration capacity of the mammary epithelium. The PR target, receptor activator of Nf‐κB ligand (RANKL), is not required for this function, and the deletion of Wnt4 reduces the mammary regeneration capacity even more than PR ablation. A fluorescent reporter reveals so far undetected perinatal Wnt4 expression that is independent of hormone signaling. Pubertal and adult Wnt4 expression is specific to PR+ luminal cells and requires intact PR signaling. Conditional deletion of Wnt4 reveals that this early, previously unappreciated, Wnt4 expression is functionally important. We provide genetic evidence that canonical Wnt signaling in the myoepithelium required PR and Wnt4, whereas the canonical Wnt signaling activities observed in the embryonic mammary bud and in the stroma around terminal end buds are independent of Wnt4. Thus, progesterone and Wnt4 control stem cell function through a luminal–myoepithelial crosstalk with Wnt4 acting independent of PR perinatally.


Differentiation | 2010

Mapping of the fate of cell lineages generated from cells that express the Wnt4 gene by time-lapse during kidney development.

Jingdong Shan; Tiina Jokela; Ilya Skovorodkin; Seppo Vainio

The Wnt4 gene encodes a secreted signaling molecule controlling the development of several organs, such as the kidney, adrenal gland, ovary, mammary gland and pituitary gland. It is thought to act in the embryonic kidney as an auto-inducer of nephrogenesis controlling mesenchyme-to-epithelium transition, and Wnt4-deficient mice die soon after birth, probably of kidney failure. Given the requirement for Wnt4 signaling in the control of organogenesis, the targeting of Cre recombinase under the control of the Wnt4 promoter would provide a valuable tool for fate mapping and functional genomics. We report here on the generation and characterization of a Wnt4(EGFPCre) knock-in allele where the EGFPCre fusion cDNA and Neo selection cassette were targeted into the Wnt4 locus. EGFP-derived fluorescence was observed in the pretubular aggregates of the E14.5 embryonic kidney that normally express Wnt4 mRNA. Characterization of the pattern of recombination of the floxed Rosa26(LacZ) reporter with the Wnt4(EGFPCre) allele revealed that in addition to the embryonic kidney, reporter-derived staining was observed in the embryonic gonad, spinal cord, lung and adrenal gland, i.e. the sites of Wnt4 gene expression. Time-lapse fate mapping of the Wnt4(EGFPCre)-activated yellow fluorescent protein (YFP) from the Rosa26 locus in organ culture revealed that the cells that had expressed the Wnt4 gene contributed to the nephrons, some of the cells around the stalk of the developing ureter and also certain presumptive medullary stromal cells. Moreover, the time-lapse movies suggested that the first few pretubular cell aggregates may not mature into nephrons but instead appear to disintegrate. In association with this, Rosa26(YFP)-positive stromal cells emerge around these disintegrating structures. Such cells may be transient, since their derivatives are neither detected later in the more mature kidney nor is there an overlap of the Wnt4(EGFPCre); Rosa26(LacZ)-marked cells with those of the endothelial cells, the smooth muscle cells or the macrophages. The Wnt4(EGFPCre) allele provides a useful new tool for conditional mutagenesis and provides the first time-lapse-based map of the fate of nephron precursor cells.


PLOS ONE | 2011

A Secreted BMP Antagonist, Cer1, Fine Tunes the Spatial Organization of the Ureteric Bud Tree during Mouse Kidney Development

Lijun Chi; Ulla Saarela; Antti Railo; Renata Prunskaite-Hyyryläinen; Ilya Skovorodkin; Shelagh Anthony; Kenjiro Katsu; Yu Liu; Jingdong Shan; Ana Marisa Salgueiro; José António Belo; Jamie A. Davies; Yuji Yokouchi; Seppo Vainio

The epithelial ureteric bud is critical for mammalian kidney development as it generates the ureter and the collecting duct system that induces nephrogenesis in dicrete locations in the kidney mesenchyme during its emergence. We show that a secreted Bmp antagonist Cerberus homologue (Cer1) fine tunes the organization of the ureteric tree during organogenesis in the mouse embryo. Both enhanced ureteric expression of Cer1 and Cer1 knock out enlarge kidney size, and these changes are associated with an altered three-dimensional structure of the ureteric tree as revealed by optical projection tomography. Enhanced Cer1 expression changes the ureteric bud branching programme so that more trifid and lateral branches rather than bifid ones develop, as seen in time-lapse organ culture. These changes may be the reasons for the modified spatial arrangement of the ureteric tree in the kidneys of Cer1+ embryos. Cer1 gain of function is associated with moderately elevated expression of Gdnf and Wnt11, which is also induced in the case of Cer1 deficiency, where Bmp4 expression is reduced, indicating the dependence of Bmp expression on Cer1. Cer1 binds at least Bmp2/4 and antagonizes Bmp signalling in cell culture. In line with this, supplementation of Bmp4 restored the ureteric bud tip number, which was reduced by Cer1+ to bring it closer to the normal, consistent with models suggesting that Bmp signalling inhibits ureteric bud development. Genetic reduction of Wnt11 inhibited the Cer1-stimulated kidney development, but Cer1 did not influence Wnt11 signalling in cell culture, although it did inhibit the Wnt3a-induced canonical Top Flash reporter to some extent. We conclude that Cer1 fine tunes the spatial organization of the ureteric tree by coordinating the activities of the growth-promoting ureteric bud signals Gndf and Wnt11 via Bmp-mediated antagonism and to some degree via the canonical Wnt signalling involved in branching.


Developmental Biology | 2011

Secreted Wnt antagonist Dickkopf-1 controls kidney papilla development coordinated by Wnt-7b signalling.

Ilkka Pietilä; Kristina Ellwanger; Antti Railo; Tiina Jokela; Ivan del Barco Barrantes; Jingdong Shan; Christof Niehrs; Seppo Vainio

Wnt signalling regulates several aspects of kidney development such as nephrogenesis, ureteric bud branching and organisation of the collecting duct cells. We addressed the potential involvement of Dickkopf-1 (Dkk1), a secreted Wnt pathway antagonist. Dkk1 is expressed in the developing mouse kidney by pretubular cell aggregates and the nephrons derived from them. Besides the mesenchyme cells, the epithelial ureteric bud and more mature ureteric bud derivatives in the medulla and the papilla tip express the Dkk1 gene. To reveal the potential roles of Dkk1, we generated a floxed allele and used three Cre lines to inactivate Dkk1 function in the developing kidney. Interestingly, Dkk1 deficiency induced by Pax8Cre in the kidneys led in newborn mice to an overgrown papilla that was generated by stimulated proliferation of the collecting duct and loop of Henle cells, implying a role for Dkk1 in the collecting duct and/or loop of Henle development. Since Pax8Cre-induced Dkk1 deficiency reduced marker gene expression, Scnn1b in the collecting duct and Slc12a1 in the loop of Henle, these results together with the extended papilla phenotype are likely reasons for the decreased amount of ions and urine produced by Dkk1-deficient kidneys in the adult. Recombinant Dkk1 protein in cultured cells inhibited Wnt-7b-induced canonical Wnt signalling, which is critical for collecting duct and loop of Henle development. Moreover, Dkk1 deficiency led to an increase in the expression of canonical Wnt signalling of target Lef-1 gene expression in the stromal cells of the developing papilla. Based on the results, we propose that Dkk1 controls the degree of Wnt-7b signalling in the papilla to coordinate kidney organogenesis.


Blood | 2011

Wnt4 regulates thymic cellularity through the expansion of thymic epithelial cells and early thymic progenitors

Krista M. Heinonen; Juan Ruiz Vanegas; Sylvie Brochu; Jingdong Shan; Seppo Vainio; Claude Perreault

Thymus atrophy is the most common immunopathology in humans, and its occurrence is hastened by several factors that coalesce in patients receiving chemotherapy and most of all in recipients of hematopoietic cell transplantation. We have shown previously that posthematopoietic cell transplantation thymic function was improved by retroviral overexpression of Wnt4 in donor hematopoietic cells. Here, by using both conventional and conditional null mutant mice, we show that Wnt4 regulates steady-state thymic cellularity by a thymic epithelial cell (TEC)-dependent mechanism. The absence of Wnt4 suppressed fetal and postnatal thymic expansion and resulted in decreased TEC numbers, an alteration of the medullary-to-cortical TEC ratio, and a disproportionate loss of the most immature cKit(hi) thymocyte precursors. Wnt4 also is implicated in the maintenance of adult thymopoiesis, although the impact of its deletion once thymic involution has been initiated is more subtle. Together, our results show that Wnt4 controls thymic size by modulating TEC expansion and the earliest, TEC-dependent steps of thymocyte development both in the fetal and postnatal thymus. Wnt4 and its downstream signaling pathways could thus represent interesting candidates to improve thymic output in subjects with thymic atrophy.


The FASEB Journal | 2014

Wnt4, a pleiotropic signal for controlling cell polarity, basement membrane integrity, and antimüllerian hormone expression during oocyte maturation in the female follicle

Renata Prunskaite-Hyyryläinen; Jingdong Shan; Antti Railo; Krista M. Heinonen; Ilkka Miinalainen; Wenying Yan; Bairong Shen; Claude Perreault; Seppo Vainio

Wnt4 is a key signal that channels the developmental fate of the indifferent mammalian gonad toward the ovary, but whether Wnt4 has later roles during ovary development remains unknown. To investigate this, we inactivated the Wnt4 gene by crossing Amhr2Cre and doxycycline‐inducible RosartTA‐knock‐in Cre mice with mice carrying a floxed Wnt4 allele and used a novel Wnt4mCherry‐knock‐in mouse. In these models, ovarian folliculogenesis was compromised, and female fertility was severely reduced, and Wnt4 deficiency eventually led to premature ovarian failure. These anomalies were associated with cell polarity defects in the follicle. Within the follicle, laminin and type IV collagen assembled ectopic basement membrane–like structures, the cell adherens junction components N‐cadherin and β‐catenin lost their polarized expression pattern, and expression of the gap junction protein connexin 43 was reduced by ~30% when compared with that of the controls. Besides these changes, expression of antimullerian hormone (Amh) was inhibited in the absence of Wnt4 signaling in vivo. Consistent with this, Wnt4 signaling up‐regulated Amh gene expression in KK1 cells in vitro. Thus, Wnt4 signaling is necessary during maturation of the ovarian follicles, where it coordinates expression of Amh, cell survival, and polarized organization of the follicular cells.—Prunskaite‐Hyyrylainen, R., Shan, J., Railo, A., Heinonen, K. M., Miinalainen, I., Yan, W., Shen, B., Perreault, C., Vainio, S.J. Wnt4, a pleiotropic signal for controlling cell polarity, basement membrane integrity, and antimullerian hormone expression during oocyte maturation in the female follicle. FASEB J. 28, 28–1568 (1581). www.fasebj.org


Genesis | 2009

Generation of an allele to inactivate Wnt4 gene function conditionally in the mouse.

Jingdong Shan; Tiina Jokela; Hellevi Peltoketo; Seppo Vainio

The Wnt family member Wnt4 is critical for the development of several organs, including the kidney, gonad, and adrenal, mammary, and pituitary glands. To study its potential postnatal functions, we generated a floxed Wnt4 allele. A single loxP site was targeted to the second intron, while a loxP‐Neo‐loxP cassette was placed 3′ from Exon 5. The floxed Neo cassette was subsequently removed by crossing with MeuCre40 transgenic mice. The Wnt4 gene was specifically inactivated with CAGCre and another Wnt4 allele, Wnt4EGFPCre, in which the Cre is driven by the endogenous Wnt4 promoter. Deletion of Wnt4 gene function with CAGCre impaired kidney development, as is the case with the conventional knockout. Similarly, the Wnt4EGFPCre‐mediated inactivation of Wnt4 function considerably reduced the amount of Wnt4 transcripts, led to a severe defect in kidney development, and caused the female embryos to undergo partial sex reversal to males. All in all, the floxed Wnt4 allele serves as a useful tool for studying the roles of Wnt4 signaling during the life cycle. genesis 47:782–788, 2009.

Collaboration


Dive into the Jingdong Shan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge