Jingen Li
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jingen Li.
Fungal Genetics and Biology | 2013
Qian Liu; Sheng-Hua Ying; Jingen Li; Chaoguang Tian; Ming-Guang Feng
Msn2/4 transcription factors in some fungi have null effects on virulence and cellular stress responses. Here we found that the transcriptional regulation of Msn2 orthologs is vital for the conidiation, virulence and multi-stress responses of Beauveria bassiana (Bb) and Metarhizium robertsii (Mr), which lack Msn4 orthologs. Compared to wild-type and complemented strains of each fungus with all similar phenotypes, ΔBbmsn2 and ΔMrmsn2 showed remarkable defects in conidial yield (∼40% decrease) and virulence (∼25% decrease). Both delta mutants lost 20-65% of their tolerances to hyperosmolarity, oxidation, carbendazim, cell wall perturbing and high temperature at 34 °C during colony growth. Their conidia were also significantly (18-41%) less tolerant to oxidation, hyperosmolarity, wet-heat stress at 45 °C and UV-B irradiation. Accompanied with the defective phenotypes, several conidiation- and virulence-associated genes were greatly repressed in ΔBbmsn2 and ΔMrmsn2. Moreover, differentially expressed genes in the transcriptomes of ΔBbmsn2 versus wild type were ∼3% more under oxidative stress, but ∼12% fewer under heat shock, than those in the ΔMrmsn2 counterparts. Many stress-responsive effector genes and cellular signaling factors were remarkably downregulated. Taken together, the two entomopathogens could have evolved somewhat distinct stress-responsive mechanisms finely tuned by Msn2, highlighting the biological significance of Msn2 orthologs for filamentous fungi.
Biotechnology for Biofuels | 2014
Jingen Li; Liangcai Lin; Huiyan Li; Chaoguang Tian; Yanhe Ma
BackgroundD-glucose, D-xylose and L-arabinose are the three major monosaccharides in plant cell walls. Complete utilization of all three sugars is still a bottleneck for second-generation cellulolytic bioethanol production, especially for L-arabinose. However, little is known about gene expression profiles during L-arabinose utilization in fungi and a comparison of the genome-wide fungal response to these three major monosaccharides has not yet been reported.ResultsUsing next-generation sequencing technology, we have analyzed the transcriptome of N. crassa grown on L-arabinose versus D-xylose, with D-glucose as the reference. We found that the gene expression profiles on L-arabinose were dramatically different from those on D-xylose. It appears that L-arabinose can rewire the fungal cell metabolic pathway widely and provoke the expression of many kinds of sugar transporters, hemicellulase genes and transcription factors. In contrast, many fewer genes, mainly related to the pentose metabolic pathway, were upregulated on D-xylose. The rewired metabolic response to L-arabinose was significantly different and wider than that under no carbon conditions, although the carbon starvation response was initiated on L-arabinose. Three novel sugar transporters were identified and characterized for their substrates here, including one glucose transporter GLT-1 (NCU01633) and two novel pentose transporters, XAT-1 (NCU01132), XYT-1 (NCU05627). One transcription factor associated with the regulation of hemicellulase genes, HCR-1 (NCU05064) was also characterized in the present study.ConclusionsWe conducted the first transcriptome analysis of Neurospora crassa grown on L-arabinose and performed a comparative analysis with cells grown on D-xylose and D-glucose, which deepens the understanding of the utilization of L-arabinose and D-xylose in filamentous fungi. The dataset generated by this research will be useful for mining target genes for D-xylose and L-arabinose utilization engineering and the novel sugar transportes identified are good targets for pentose untilization and biofuels production. Moreover, hemicellulase production by fungi could be improved by modifying the hemicellulase regulator discovered here.
Biotechnology for Biofuels | 2015
Feiyu Fan; Guoli Ma; Jingen Li; Qian Liu; Johan Philipp Benz; Chaoguang Tian; Yanhe Ma
BackgroundLignocellulolytic fungal cells suffer endoplasmic reticulum (ER) stress during lignocellulase synthesis; however, an understanding of this integrated process on a genome-wide scale remains poor. Here, we undertook a systematic investigation of this process in Neurospora crassa (N. crassa) using transcriptomic analysis coupled with genetic screens.ResultsA set of 766 genes was identified as the ER stress response targets (ESRTs) in N. crassa under cellulose utilization conditions. Among these, the expression of 223 and 186 genes showed dependence on IRE-1 and HAC-1, respectively. A total of 527 available mutants for ESRT genes were screened, 249 of which exhibited ER stress susceptibility, including 100 genes with unknown function. Disruption of ire-1 or hac-1 in N. crassa did not affect transcriptional induction of lignocellulase genes by cellulose but severely affected secretion of the corresponding enzymes. A global investigation of transcription factors (TFs) discovered three novel regulators (RES-1, RES-2, RRG-2) involved in lignocellulase secretion. Production of lignocellulases in Δres-1 increased by more than 30% in comparison to wild type (WT), while secretion decreased by nearly 30% in strains Δres-2 and Δrrg-2. Transcriptional profiling of the three TF mutants suggests they are deeply involved in lignocellulase secretion and ER stress response.ConclusionsHere, we determined the transcriptional scope of the ER stress response during lignocellulase synthesis in the model cellulolytic fungus N. crassa. Through genome-wide mutant screening and analysis, dozens of novel genes were discovered to be involved in the process. The findings of this work will be useful for strain improvement to facilitate lignocellulase and biomass-based chemical production.
PLOS ONE | 2014
Pengli Cai; Ruimeng Gu; Bang Wang; Jingen Li; Li Wan; Chaoguang Tian; Yanhe Ma
CDT-1 and CDT-2 are two cellodextrin transporters discovered in the filamentous fungus Neurospora crassa. Previous studies focused on characterizing the role of these transporters in only a few conditions, including cellulose degradation, and the function of these two transporters is not yet completely understood. In this study, we show that deletion of cdt-2, but not cdt-1, results in growth defects not only on Avicel but also on xylan. cdt-2 can be highly induced by xylan, and this mutant has a xylodextrin consumption defect. Transcriptomic analysis of the cdt-2 deletion strain on Avicel and xylan showed that major cellulase and hemicellulase genes were significantly down-regulated in the cdt-2 deletion strain and artificial over expression of cdt-2 in N. crassa increased cellulase and hemicellulase production. Together, these data clearly show that CDT-2 plays a critical role in hemicellulose sensing and utilization. This is the first time a sugar transporter has been assigned a function in the hemicellulose degradation pathway. Furthermore, we found that the transcription factor XLR-1 is the major regulator of cdt-2, while cdt-1 is primarily regulated by CLR-1. These results deepen our understanding of the functions of both cellodextrin transporters, particularly for CDT-2. Our study also provides novel insight into the mechanisms for hemicellulose sensing and utilization in N. crassa, and may be applicable to other cellulolytic filamentous fungi.
Environmental Microbiology | 2015
Qian Liu; Jingen Li; Sheng-Hua Ying; Juan-Juan Wang; Wenliang Sun; Chaoguang Tian; Ming-Guang Feng
Two conserved 14-3-3 proteins orthologous to Saccharomyces cerevisiae Bmh1/2 are poorly understood in filamentous fungi. Here we show that Bmh1 and Bmh2 contribute equally to the fundamental biology and physiology of Beauveria bassiana by targeting many sets of proteins/enzymes. Single Bmh deletion caused similar upregulation of another. Excellent knockdown (∼91%) expressions of Bmh1 in ΔBmh2 and Bmh2 in ΔBmh1 resulted in equally more severe multiphenotypic defects than the single deletions, including G2 /M transition, blastospore size, carbon/nitrogen utilization, conidiation, germination and conidial tolerances to high osmolarity, oxidation, cell wall stress, high temperature and UV-B irradiation. All the deletion and deletion/knockdown mutants showed similar defects in blastospore yield and density, hyphal septation and cell size, hyphal responses to most chemical stresses and virulence. All the defects were evident with altered transcripts of phenotype-related genes and well restored by each Bmh complementation. Our Bmh1- and Bmh2-specific transcriptomes generated under osmotic and oxidative stresses revealed up to 6% genes differentially expressed by at least twofold in the fungal genome. Many of those were greatly depressed or co-depressed in ΔBmh1 and ΔBmh2. Our findings provide a thorough insight into the functions and complementary effects of the two 14-3-3 proteins in the filamentous entomopathogen.
Biotechnology for Biofuels | 2015
Bang Wang; Pengli Cai; Wenliang Sun; Jingen Li; Chaoguang Tian; Yanhe Ma
BackgroundCrop residue is an abundant, low-cost plant biomass material available worldwide for use in the microbial production of enzymes, biofuels, and valuable chemicals. However, the diverse chemical composition and complex structure of crop residues are more challenging for efficient degradation by microbes than are homogeneous polysaccharides. In this study, the transcriptional responses of Neurospora crassa to various plant straws were analyzed using RNA-Seq, and novel beneficial factors for biomass-induced enzyme production were evaluated.ResultsComparative transcriptional profiling of N. crassa grown on five major crop straws of China (barley, corn, rice, soybean, and wheat straws) revealed a highly overlapping group of 430 genes, the biomass commonly induced core set (BICS). A large proportion of induced carbohydrate-active enzyme (CAZy) genes (82 out of 113) were also conserved across the five plant straws. Excluding 178 genes within the BICS that were also upregulated under no-carbon conditions, the remaining 252 genes were defined as the biomass regulon (BR). Interestingly, 88 genes were only induced by plant biomass and not by three individual polysaccharides (Avicel, xylan, and pectin); these were denoted as the biomass unique set (BUS). Deletion of one BUS gene, the transcriptional regulator rca-1, significantly improved lignocellulase production using plant biomass as the sole carbon source, possibly functioning via de-repression of the regulator clr-2. Thus, this result suggests that rca-1 is a potential engineering target for biorefineries, especially for plant biomass direct microbial conversion processes.ConclusionsTranscriptional profiling revealed a large core response to different sources of plant biomass in N. crassa. The sporulation regulator rca-1 was identified as beneficial for biomass-based enzyme production.
Applied and Environmental Microbiology | 2015
Jingen Li; Jing Xu; Pengli Cai; Bang Wang; Yanhe Ma; J. Philipp Benz; Chaoguang Tian
ABSTRACT Limited uptake is one of the bottlenecks for l-arabinose fermentation from lignocellulosic hydrolysates in engineered Saccharomyces cerevisiae. This study characterized two novel l-arabinose transporters, LAT-1 from Neurospora crassa and MtLAT-1 from Myceliophthora thermophila. Although the two proteins share high identity (about 83%), they display different substrate specificities. Sugar transport assays using the S. cerevisiae strain EBY.VW4000 indicated that LAT-1 accepts a broad substrate spectrum. In contrast, MtLAT-1 appeared much more specific for l-arabinose. Determination of the kinetic properties of both transporters revealed that the Km values of LAT-1 and MtLAT-1 for l-arabinose were 58.12 ± 4.06 mM and 29.39 ± 3.60 mM, respectively, with corresponding V max values of 116.7 ± 3.0 mmol/h/g dry cell weight (DCW) and 10.29 ± 0.35 mmol/h/g DCW, respectively. In addition, both transporters were found to use a proton-coupled symport mechanism and showed only partial inhibition by d-glucose during l-arabinose uptake. Moreover, LAT-1 and MtLAT-1 were expressed in the S. cerevisiae strain BSW2AP containing an l-arabinose metabolic pathway. Both recombinant strains exhibited much faster l-arabinose utilization, greater biomass accumulation, and higher ethanol production than the control strain. In conclusion, because of higher maximum velocities and reduced inhibition by d-glucose, the genes for the two characterized transporters are promising targets for improved l-arabinose utilization and fermentation in S. cerevisiae.
Biotechnology Letters | 2017
Liangcai Lin; Yong Chen; Jingen Li; Shanshan Wang; Wenliang Sun; Chaoguang Tian
ObjectivesTo elucidate the mechanism of cellulase signal transduction in filamentous fungi including the components of the cellulase induction pathway.ResultsNeurospora crassa ncw-1 encodes a non-anchored cell wall protein. The absence of ncw-1 increased cellulase gene expression and this is not due to relieving carbon catabolite repression mediated by the cre-1 pathway. A mutant lacking genes encoding both three major β-glucosidase enzymes and NCW-1 (Δ3βGΔncw-1) was constructed. Transcriptome analysis of the quadruple mutant demonstrated enhanced expression of cellodextrin transporters after ncw-1 deletion, indicating that ncw-1 affects cellulase expression and production by inhibiting the uptake of the cellodextrin.ConclusionsNCW-1 is a novel component that plays a critical role in the cellulase induction signaling pathway.
Microbial Cell Factories | 2018
Liangcai Lin; Zhiyong Sun; Jingen Li; Yong Chen; Qian Liu; Wenliang Sun; Chaoguang Tian
BackgroundThe cellulolytic fungus Neurospora crassa is considered a potential host for enzyme and bioethanol production. However, large scale applications are hindered by its filamentous growth. Although previous investigations have shown that mycelial morphology in submerged culture can be controlled by altering physical factors, there is little knowledge available about the potential for morphology control by genetic modification.ResultsIn this study, we screened morphological mutants in the filamentous fungus N. crassa. Of the 90 morphological mutants screened, 14 mutants exhibited considerably higher viscosity compared with that of the wild type strain, and only two mutants showed low-viscosity morphologies in submerged culture. We observed that disruption of gul-1 (NCU01197), which encodes an mRNA binding protein involved in cell wall remodeling, caused pellet formation as the fermentation progressed, and resulted in the most significant decrease in viscosity of culture broth. Moreover, over-expression of gul-1 caused dramatically increased viscosity, suggesting that the gul-1 had an important function in mycelial morphology during submerged cultivation. Transcriptional profiling showed that expression of genes encoding eight GPI-anchored cell wall proteins was lowered in Δgul-1 while expression of genes associated with two non-anchored cell wall proteins was elevated. Meanwhile, the expression levels of two hydrophobin genes were also significantly altered. These results suggested that GUL-1 affected the transcription of cell wall-related genes, thereby influencing cell wall structure and mycelial morphology. Additionally, the deletion of gul-1 caused increased protein secretion, probably due to a defect in cell wall integrity, suggesting this as an alternative strategy of strain improvement for enzyme production. To confirm practical applications, deletion of gul-1 in the hyper-cellulase producing strain (∆ncw-1∆Ncap3m) significantly reduced the viscosity of culture broth.ConclusionsUsing the model filamentous fungus N. crassa, genes that affect mycelial morphology in submerged culture were explored through systematic screening of morphological mutants. Disrupting several candidate genes altered viscosities in submerged culture. This work provides an example for controlling fungal morphology in submerged fermentation by genetic engineering, and will be beneficial for industrial fungal strain improvement.
Biotechnology for Biofuels | 2017
Qian Liu; Ranran Gao; Jingen Li; Liangcai Lin; Junqi Zhao; Wenliang Sun; Chaoguang Tian