Jinggeng Zhao
Harbin Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jinggeng Zhao.
Inorganic Chemistry | 2011
Jinggeng Zhao; Haozhe Liu; Lars Ehm; Zhiqiang Chen; Stanislav V. Sinogeikin; Yusheng Zhao; Genda Gu
A new type of disordered substitution alloy of Sb and Te at above 15.1 GPa was discovered by performing in situ high-pressure angle-dispersive X-ray diffraction experiments on antimony telluride (Sb(2)Te(3)), a topological insulator and thermoelectric material, at room temperature. In this disordered substitution alloy, Sb(2)Te(3) crystallizes into a monoclinic structure with the space group C2/m, which is different from the corresponding high-pressure phase of the similar isostructural compound Bi(2)Te(3). Above 19.8 GPa, Sb(2)Te(3) adopts a body-centered-cubic structure with the disordered atomic array in the crystal lattice. The in situ high-pressure experiments down to about 13 K show that Sb(2)Te(3) undergoes the same phase-transition sequence with increasing pressure at low temperature, with almost the same phase-transition pressures.
Journal of Physics: Condensed Matter | 2013
Jinggeng Zhao; Haozhe Liu; Lars Ehm; Dawei Dong; Zhiqiang Chen; Genda Gu
The phase transition, amorphization, and crystallization behaviors of the topological insulator bismuth selenide (Bi2Se3) were discovered by performing in situ high-pressure angle-dispersive x-ray diffraction experiments during an increasing, decreasing, and recycling pressure process. In the compression process, Bi2Se3 transforms from the original rhombohedral structure (phase I(A)) to a monoclinic structure (phase II) at about 10.4 GPa, and further to a body-centered tetragonal structure (phase III) at about 24.5 GPa. When releasing pressure to ambient conditions after the complete transformation from phase II to III, Bi2Se3 becomes an amorphous solid (AM). In the relaxation process from this amorphous state, Bi2Se3 starts crystallizing into an orthorhombic structure (phase I(B)) about five hours after releasing the pressure to ambient. A review of the pressure-induced phase transition behaviors of A2B3-type materials composed from the V and VI group elements is presented.
Journal of the American Chemical Society | 2008
Jinggeng Zhao; Luhong Wang; Dawei Dong; Zhiguo Liu; Haozhe Liu; Genfu Chen; Dan Wu; Jianlin Luo; N. L. Wang; Yong Yu; Changqing Jin; Quanzhong Guo
The high-pressure angle-dispersive X-ray diffraction experiments on the iron-based superconductor Nd(O0.88F0.12)FeAs were performed up to 32.7 GPa at room temperature. An isostructural phase transition starts at approximately 10 GPa. When pressure is higher than 13.5 GPa, Nd(O0.88F0.12)FeAs completely transforms to a high-pressure phase, which remains the same tetragonal structure with a larger a-axis and smaller c-axis than those of the low-pressure phase. The ambient conditions isothermal bulk moduli B0 are derived as 102(2) and 245(9) GPa for the low-pressure phase and high-pressure phase, respectively. The structure analysis based on the Rietveld refinement methods shows the difference of pressure dependence of the Fe-As and Nd-(O, F) bonding distances, as well as As-Fe-As and Nd-(O, F)-Nd angles between the low-pressure phase and high-pressure phase.
Scientific Reports | 2015
Zhenhai Yu; Lin Wang; Qingyang Hu; Jinggeng Zhao; Shuai Yan; Ke Yang; Stanislav V. Sinogeikin; Genda Gu; Ho-kwang Mao
Raman spectroscopy and angle dispersive X-ray diffraction (XRD) experiments of bismuth selenide (Bi2Se3) have been carried out to pressures of 35.6 and 81.2 GPa, respectively, to explore its pressure-induced phase transformation. The experiments indicate that a progressive structural evolution occurs from an ambient rhombohedra phase (Space group (SG): R-3m) to monoclinic phase (SG: C2/m) and eventually to a high pressure body-centered tetragonal phase (SG: I4/mmm). Evidenced by our XRD data up to 81.2 GPa, the Bi2Se3 crystallizes into body-centered tetragonal structures rather than the recently reported disordered body-centered cubic (BCC) phase. Furthermore, first principles theoretical calculations favor the viewpoint that the I4/mmm phase Bi2Se3 can be stabilized under high pressure (>30 GPa). Remarkably, the Raman spectra of Bi2Se3 from this work (two independent runs) are still Raman active up to ~35 GPa. It is worthy to note that the disordered BCC phase at 27.8 GPa is not observed here. The remarkable difference in atomic radii of Bi and Se in Bi2Se3 may explain why Bi2Se3 shows different structural behavior than isocompounds Bi2Te3 and Sb2Te3.
Scientific Reports | 2015
Zhenhai Yu; Lin Wang; L.D. Wang; Haozhe Liu; Jinggeng Zhao; Chunyu Li; Stanislav V. Sinogeikin; Wei Wu; Jianlin Luo; N. L. Wang; Ke Yang; Yusheng Zhao; Ho-kwang Mao
Phase transition of solid-state materials is a fundamental research topic in condensed matter physics, materials science and geophysics. It has been well accepted and widely proven that isostructural compounds containing different cations undergo same pressure-induced phase transitions but at progressively lower pressures as the cation radii increases. However, we discovered that this conventional law reverses in the structural transitions in 122-type iron-based superconductors. In this report, a combined low temperature and high pressure X-ray diffraction (XRD) measurement has identified the phase transition curves among the tetragonal (T), orthorhombic (O) and the collapsed-tetragonal (cT) phases in the structural phase diagram of the iron-based superconductor AFe2As2 (A = Ca, Sr, Eu, and Ba). The cation radii dependence of the phase transition pressure (T → cT) shows an opposite trend in which the compounds with larger ambient radii cations have a higher transition pressure.
Journal of Applied Physics | 2016
Chunyu Li; Feng Ke; Qingyang Hu; Zhenhai Yu; Jinggeng Zhao; Zhiqiang Chen; Hao Yan
Here, we report comprehensive studies on the high-pressure structural and electrical transport properties of the layered transition metal chalcogenide (Cr2S3) up to 36.3 GPa. A structural phase transition was observed in the rhombohedral Cr2S3 near 16.5 GPa by the synchrotron angle dispersive X-ray diffraction measurement using a diamond anvil cell. Through in situ resistance measurement, the electric resistance value was detected to decrease by an order of three over the pressure range of 7–15 GPa coincided with the structural phase transition. Measurements on the temperature dependence of resistivity indicate that it is a semiconductor-to-metal transition in nature. The results were also confirmed by the electronic energy band calculations. Above results may shed a light on optimizing the performance of Cr2S3 based applications under extreme conditions.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Zhenhai Yu; Wei Wu; Qingyang Hu; Jinggeng Zhao; Chunyu Li; Ke Yang; Jinguang Cheng; Jianlin Luo; Lin Wang; Ho-kwang Mao
Significance We preformed high-pressure structural studies of CrAs to understand the physical mechanism of its pressure-induced superconductivity. It was found that the lattice parameters a and c both demonstrate a nonmonotonic change, and the lattice parameter b undergoes a rapid contraction at ∼0.18–0.35 GPa, which suggests that a pressure-induced isostructural phase transition occurs in CrAs. Above the phase transition pressure, the axial compressibilities of CrAs present remarkable anisotropy. The pressure-related structural changes occurred concurrently with the appearance of bulk superconductivity, shedding light on the structural and related electronic responses to high pressure, which play a key role toward understanding the superconductivity of CrAs. CrAs was observed to possess the bulk superconductivity under high-pressure conditions. To understand the superconducting mechanism and explore the correlation between the structure and superconductivity, the high-pressure structural evolution of CrAs was investigated using the angle-dispersive X-ray diffraction (XRD) method. The structure of CrAs remains stable up to 1.8 GPa, whereas the lattice parameters exhibit anomalous compression behaviors. With increasing pressure, the lattice parameters a and c both demonstrate a nonmonotonic change, and the lattice parameter b undergoes a rapid contraction at ∼0.18−0.35 GPa, which suggests that a pressure-induced isostructural phase transition occurs in CrAs. Above the phase transition pressure, the axial compressibilities of CrAs present remarkable anisotropy. A schematic band model was used to address the anomalous compression behavior of CrAs. The present results shed light on the structural and related electronic responses to high pressure, which play a key role toward understanding the superconductivity of CrAs.
Inorganic Chemistry | 2013
Jinggeng Zhao; Haozhe Liu; Lars Ehm; Dawei Dong; Zhiqiang Chen; Q. Liu; Wanzheng Hu; N. L. Wang; Changqing Jin
High-pressure angle-dispersive X-ray diffraction experiments on iron-based superconductor Ce(O(0.84)F(0.16))FeAs were performed up to 54.9 GPa at room temperature. A tetragonal to tetragonal isostructural phase transition starts at about 13.9 GPa, and a new high-pressure phase has been found above 33.8 GPa. At pressures above 19.9 GPa, Ce(O(0.84)F(0.16))FeAs completely transforms to a high-pressure tetragonal phase, which remains in the same tetragonal structure with a larger a-axis and smaller c-axis than those of the low-pressure tetragonal phase. The structure analysis shows a discontinuity in the pressure dependences of the Fe-As and Ce-(O, F) bond distances, as well as the As-Fe-As and Ce-(O, F)-Ce bond angles in the transition region, which correlates with the change in T(c) of this compound upon compression. The isostructural phase transition in Ce(O(0.84)F(0.16))FeAs leads to a drastic drop in the superconducting transition temperature T(c) and restricts the superconductivity at low temperature. For the 1111-type iron-based superconductors, the structure evolution and following superconductivity changes under compression are related to the radius of lanthanide cations in the charge reservoir layer.
Journal of Physics: Condensed Matter | 2017
Zhenhai Yu; Wei Wu; Pengchao Lu; Jinggeng Zhao; Jinguang Cheng; Qingyang Hu; Ye Yuan; Xin Li; Cuiying Pei; Fengjiao Chen; Zhipeng Yan; Shuai Yan; Ke Yang; Jian Sun; Jianlin Luo; Lin Wang
The influence of external pressure on the structural properties of manganese monophosphides (MnP) at room temperature has been studied using in situ angle dispersive synchrotron x-ray powder diffraction (AD-XRD) with a diamond anvil cell. The crystal structure of MnP is stable between 0 to 15 GPa. However, the compressibility of b-axis is much larger than those of a- and c-axes. From this result we suggested that the occurrence of superconductivity in MnP was induced by suppression of the long-range antiferromagnetically ordered state rather than a structural phase transition. Furthermore, the present experimental results show that the Pnma phase of MnP undergoes a pressure-induced structural phase transition at ~15.0 GPa. This finding lighted up-to-date understanding of the common prototype B31 structure (Strukturbericht Designation: B31) in transition metal monophosphides. No additional structural phase transition was observed up to 35.1 GPa (Run 1) and 40.2 GPa (Run 2) from the present AD-XRD results. With an extensive crystal structure searching and ab initio calculations, we predict that MnP underwent two pressure-induced structural phase transitions of Pnma → P213 and P213 → Pm-3m (CsCl-type) at 55.0 and 92.0 GPa, respectively. The structural stability and the electronic structures of manganese monophosphides under high pressure are also briefly discussed.
Inorganic Chemistry | 2016
Jinggeng Zhao; Liuxiang Yang; Zhenhai Yu; Yong Wang; Chunyu Li; Ke Yang; Zhiguo Liu; Yi Wang