Jinghui Luo
Leiden University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jinghui Luo.
Journal of Inorganic Biochemistry | 2011
Ana Popović-Bijelić; Christian R. Kowol; Maria E. S. Lind; Jinghui Luo; Fahmi Himo; Éva A. Enyedy; Vladimir B. Arion; Astrid Gräslund
Triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone, 3-AP) is currently the most promising chemotherapeutic compound among the class of α-N-heterocyclic thiosemicarbazones. Here we report further insights into the mechanism(s) of anticancer drug activity and inhibition of mouse ribonucleotide reductase (RNR) by Triapine. In addition to the metal-free ligand, its iron(III), gallium(III), zinc(II) and copper(II) complexes were studied, aiming to correlate their cytotoxic activities with their effects on the diferric/tyrosyl radical center of the RNR enzyme in vitro. In this study we propose for the first time a potential specific binding pocket for Triapine on the surface of the mouse R2 RNR protein. In our mechanistic model, interaction with Triapine results in the labilization of the diferric center in the R2 protein. Subsequently the Triapine molecules act as iron chelators. In the absence of external reductants, and in presence of the mouse R2 RNR protein, catalytic amounts of the iron(III)-Triapine are reduced to the iron(II)-Triapine complex. In the presence of an external reductant (dithiothreitol), stoichiometric amounts of the potently reactive iron(II)-Triapine complex are formed. Formation of the iron(II)-Triapine complex, as the essential part of the reaction outcome, promotes further reactions with molecular oxygen, which give rise to reactive oxygen species (ROS) and thereby damage the RNR enzyme. Triapine affects the diferric center of the mouse R2 protein and, unlike hydroxyurea, is not a potent reductant, not likely to act directly on the tyrosyl radical.
ChemBioChem | 2013
Sebastian K.T.S. Wärmländer; Ann Tiiman; Axel Abelein; Jinghui Luo; Jyri Jarvet; Kajsa Löfgren Söderberg; Jens Danielsson; Astrid Gräslund
Alzheimers disease is the most common of the protein misfolding (“amyloid”) diseases. The deposits in the brains of afflicted patients contain as a major fraction an aggregated insoluble form of the so‐called amyloid β‐peptides (Aβ peptides): fragments of the amyloid precursor protein of 39–43 residues in length. This review focuses on biophysical studies of the Aβ peptides: that is, of the aggregation pathways and intermediates observed during aggregation, of the molecular structures observed along these pathways, and of the interactions of Aβ with Cu and Zn ions and with small molecules that modify the aggregation pathways. Particular emphasis is placed on studies based on high‐resolution and solid‐state NMR methods. Theoretical studies relating to the interactions are also included. An emerging picture is that of Aβ peptides in aqueous solution undergoing hydrophobic collapse together with identical partners. There then follows a relatively slow process leading to more ordered secondary and tertiary (quaternary) structures in the growing aggregates. These aggregates eventually assemble into elongated fibrils visible by electron microscopy. Small molecules or metal ions that interfere with the aggregation processes give rise to a variety of aggregation products that may be studied in vitro and considered in relation to observations in cell cultures or in vivo. Although the heterogeneous nature of the processes makes detailed structural studies difficult, knowledge and understanding of the underlying physical chemistry might provide a basis for future therapeutic strategies against the disease. A final part of the review deals with the interactions that may occur between the Aβ peptides and the prion protein, where the latter is involved in other protein misfolding diseases.
ACS Chemical Neuroscience | 2013
Jinghui Luo; Chien Hung Yu; Huixin Yu; Rok Borštnar; Shina Caroline Lynn Kamerlin; Astrid Gräslund; Jan Pieter Abrahams; Sebastian K.T.S. Wärmländer
The cellular polyamines spermine, spermidine, and their metabolic precursor putrescine, have long been associated with cell-growth, tumor-related gene regulations, and Alzheimers disease. Here, we show by in vitro spectroscopy and AFM imaging, that these molecules promote aggregation of amyloid-beta (Aβ) peptides into fibrils and modulate the aggregation pathways. NMR measurements showed that the three polyamines share a similar binding mode to monomeric Aβ(1-40) peptide. Kinetic ThT studies showed that already very low polyamine concentrations promote amyloid formation: addition of 10 μM spermine (normal intracellular concentration is ~1 mM) significantly decreased the lag and transition times of the aggregation process. Spermidine and putrescine additions yielded similar but weaker effects. CD measurements demonstrated that the three polyamines induce different aggregation pathways, involving different forms of induced secondary structure. This is supported by AFM images showing that the three polyamines induce Aβ(1-40) aggregates with different morphologies. The results reinforce the notion that designing suitable ligands which modulate the aggregation of Aβ peptides toward minimally toxic pathways may be a possible therapeutic strategy for Alzheimers disease.
Journal of Biological Inorganic Chemistry | 2014
Axel Abelein; Jan Pieter Abrahams; Jens Danielsson; Astrid Gräslund; Jüri Jarvet; Jinghui Luo; Ann Tiiman; Sebastian K.T.S. Wärmländer
The amyloid β (Aβ) peptides are 39–42 residue-long peptides found in the senile plaques in the brains of Alzheimer’s disease (AD) patients. These peptides self-aggregate in aqueous solution, going from soluble and mainly unstructured monomers to insoluble ordered fibrils. The aggregation process(es) are strongly influenced by environmental conditions. Several lines of evidence indicate that the neurotoxic species are the intermediate oligomeric states appearing along the aggregation pathways. This minireview summarizes recent findings, mainly based on solution and solid-state NMR experiments and electron microscopy, which investigate the molecular structures and characteristics of the Aβ peptides at different stages along the aggregation pathways. We conclude that a hairpin-like conformation constitutes a common motif for the Aβ peptides in most of the described structures. There are certain variations in different hairpin conformations, for example regarding H-bonding partners, which could be one reason for the molecular heterogeneity observed in the aggregated systems. Interacting hairpins are the building blocks of the insoluble fibrils, again with variations in how hairpins are organized in the cross-section of the fibril, perpendicular to the fibril axis. The secondary structure propensities can be seen already in peptide monomers in solution. Unfortunately, detailed structural information about the intermediate oligomeric states is presently not available. In the review, special attention is given to metal ion interactions, particularly the binding constants and ligand structures of Aβ complexes with Cu(II) and Zn(II), since these ions affect the aggregation process(es) and are considered to be involved in the molecular mechanisms underlying AD pathology.
Journal of Biological Chemistry | 2014
Jinghui Luo; Sebastian K.T.S. Wärmländer; Astrid Gräslund; Jan Pieter Abrahams
Background: Aβ amyloid formation is associated with Alzheimer disease. Results: Non-chaperone proteins prevent amyloid formation and reduce the cytotoxicity of the Aβ peptide. Conclusion: Non-chaperone proteins may affect the onset and development of Alzheimer disease by interfering with Aβ peptide aggregation. Significance: Non-chaperone proteins can function as a chaperone protein to regulate the pathway of the Aβ fibrillation in proteostasis providing a new strategy in the treatment of Alzheimer disease. Many factors are known to influence the oligomerization, fibrillation, and amyloid formation of the Aβ peptide that is associated with Alzheimer disease. Other proteins that are present when Aβ peptides deposit in vivo are likely to have an effect on these aggregation processes. To separate specific versus broad spectrum effects of proteins on Aβ aggregation, we tested a series of proteins not reported to have chaperone activity: catalase, pyruvate kinase, albumin, lysozyme, α-lactalbumin, and β-lactoglobulin. All tested proteins suppressed the fibrillation of Alzheimer Aβ(1–40) peptide at substoichiometric ratios, albeit some more effectively than others. All proteins bound non-specifically to Aβ, stabilized its random coils, and reduced its cytotoxicity. Surprisingly, pyruvate kinase and catalase were at least as effective as known chaperones in inhibiting Aβ aggregation. We propose general mechanisms for the broad-spectrum inhibition Aβ fibrillation by proteins. The mechanisms we discuss are significant for prognostics and perhaps even for prevention and treatment of Alzheimer disease.
Chemistry: A European Journal | 2014
Jinghui Luo; Jan Pieter Abrahams
Many neurodegenerative diseases, like Parkinsons, Alzheimers, or Huntingtons disease, occur as a result of amyloid protein fibril formation and cell death induced by this process. Cyclic peptides (CPs) and their derivatives form a new class of powerful inhibitors that prevent amyloid fibrillation and decrease the cytotoxicity of aggregates. The strategies for designing CPs are described, with respect to their amino acid sequence and/or conformational similarity to amyloid fibrils. The implications of CPs for the study and possible treatment of amyloid-related diseases are discussed.
Journal of Biological Chemistry | 2016
Jinghui Luo; Sebastian K.T.S. Wärmländer; Astrid Gräslund; Jan Pieter Abrahams
Many protein folding diseases are intimately associated with accumulation of amyloid aggregates. The amyloid materials formed by different proteins/peptides share many structural similarities, despite sometimes large amino acid sequence differences. Some amyloid diseases constitute risk factors for others, and the progression of one amyloid disease may affect the progression of another. These connections are arguably related to amyloid aggregates of one protein being able to directly nucleate amyloid formation of another, different protein: the amyloid cross-interaction. Here, we discuss such cross-interactions between the Alzheimer disease amyloid-β (Aβ) peptide and other amyloid proteins in the context of what is known from in vitro and in vivo experiments, and of what might be learned from clinical studies. The aim is to clarify potential molecular associations between different amyloid diseases. We argue that the amyloid cascade hypothesis in Alzheimer disease should be expanded to include cross-interactions between Aβ and other amyloid proteins.
Chemistry: A European Journal | 2013
Jinghui Luo; José M. Otero; Chien Hung Yu; Sebastian K.T.S. Wärmländer; Astrid Gräslund; Mark Overhand; Jan Pieter Abrahams
In Alzheimers disease, amyloid-β (Aβ) peptides aggregate into extracellular fibrillar deposits. Although these deposits may not be the prime cause of the neurodegeneration that characterizes this disease, inhibition or dissolution of amyloid fibril formation by Aβ peptides is likely to affect its development. ThT fluorescence measurements and AFM images showed that the natural antibiotic gramicidin S significantly inhibited Aβ amyloid formation in vitro and could dissolve amyloids that had formed in the absence of the antibiotic. In silico docking suggested that gramicidin S, a cyclic decapeptide that adopts a β-sheet conformation, binds to the Aβ peptide hairpin-stacked fibril through β-sheet interactions. This may explain why gramicidin S reduces fibril formation. Analogues of gramicidin S were also tested. An analogue with a potency that was four-times higher than that of the natural product was identified.
PLOS Computational Biology | 2010
Jinghui Luo; Jean-Didier Maréchal; Sebastian K.T.S. Wärmländer; Astrid Gräslund; Alex Perálvarez-Marín
The relationship between Apolipoprotein E (ApoE) and the aggregation processes of the amyloid β (Aβ) peptide has been shown to be crucial for Alzheimers disease (AD). The presence of the ApoE4 isoform is considered to be a contributing risk factor for AD. However, the detailed molecular properties of ApoE4 interacting with the Aβ peptide are unknown, although various mechanisms have been proposed to explain the physiological and pathological role of this relationship. Here, computer simulations have been used to investigate the process of Aβ interaction with the N-terminal domain of the human ApoE isoforms (ApoE2, ApoE3 and ApoE4). Molecular docking combined with molecular dynamics simulations have been undertaken to determine the Aβ peptide binding sites and the relative stability of binding to each of the ApoE isoforms. Our results show that from the several ApoE isoforms investigated, only ApoE4 presents a misfolded intermediate when bound to Aβ. Moreover, the initial α-helix used as the Aβ peptide model structure also becomes unstructured due to the interaction with ApoE4. These structural changes appear to be related to a rearrangement of the salt bridge network in ApoE4, for which we propose a model. It seems plausible that ApoE4 in its partially unfolded state is incapable of performing the clearance of Aβ, thereby promoting amyloid forming processes. Hence, the proposed model can be used to identify potential drug binding sites in the ApoE4-Aβ complex, where the interaction between the two molecules can be inhibited.
Journal of Trace Elements in Medicine and Biology | 2016
Cecilia Wallin; Yashraj S. Kulkarni; Axel Abelein; Jüri Jarvet; Qinghua Liao; Birgit Strodel; Lisa Olsson; Jinghui Luo; Jan Pieter Abrahams; Sabrina B. Sholts; Per M. Roos; Shina Caroline Lynn Kamerlin; Astrid Gräslund; Sebastian K.T.S. Wärmländer
Growing evidence links neurodegenerative diseases to metal exposure. Aberrant metal ion concentrations have been noted in Alzheimers disease (AD) brains, yet the role of metals in AD pathogenesis remains unresolved. A major factor in AD pathogenesis is considered to be aggregation of and amyloid formation by amyloid-β (Aβ) peptides. Previous studies have shown that Aβ displays specific binding to Cu(II) and Zn(II) ions, and such binding has been shown to modulate Aβ aggregation. Here, we use nuclear magnetic resonance (NMR) spectroscopy to show that Mn(II) ions also bind to the N-terminal part of the Aβ(1-40) peptide, with a weak binding affinity in the milli- to micromolar range. Circular dichroism (CD) spectroscopy, solid state atomic force microscopy (AFM), fluorescence spectroscopy, and molecular modeling suggest that the weak binding of Mn(II) to Aβ may not have a large effect on the peptides aggregation into amyloid fibrils. However, identification of an additional metal ion displaying Aβ binding reveals more complex AD metal chemistry than has been previously considered in the literature.