Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jingnan Sun is active.

Publication


Featured researches published by Jingnan Sun.


Cell Stem Cell | 2013

Intrachromosomal Looping Is Required for Activation of Endogenous Pluripotency Genes during Reprogramming

He Zhang; Wei-Wei Jiao; Lin Sun; Jiayan Fan; Mengfei Chen; Hong Wang; Xiaoyi Xu; Adong Shen; Tao Li; Beibei Niu; Shengfang Ge; Wei Li; Jiuwei Cui; Guanjun Wang; Jingnan Sun; Xianqun Fan; Xiang Hu; Randall J. Mrsny; Andrew R. Hoffman; Ji-Fan Hu

Generation of induced pluripotent stem cells (iPSCs) by defined factors is an extremely inefficient process, because there is a strong epigenetic block preventing cells from achieving pluripotency. Here we report that virally expressed factors bound to the promoters of their target genes to the same extent in both iPSCs and unreprogrammed cells (URCs). However, expression of endogenous pluripotentcy genes was observed only in iPSCs. Comparison of local chromatin structure of the OCT4 locus revealed that there was a cohesin-complex-mediated intrachromosomal loop that juxtaposes a downstream enhancer to the genes promoter, enabling activation of endogenous stemness genes. None of these long-range interactions were observed in URCs. Knockdown of the cohesin-complex gene SMC1 by RNAi abolished the intrachromosomal interaction and affected pluripotency. These findings highlight the importance of the SMC1-orchestrated intrachromosomal loop as a critical epigenetic barrier to the induction of pluripotency.


Nucleic Acids Research | 2014

A novel antisense long noncoding RNA within the IGF1R gene locus is imprinted in hematopoietic malignancies

Jingnan Sun; Wei Li; Yunpeng Sun; Dehai Yu; Xue Wen; Hong Wang; Jiuwei Cui; Guanjun Wang; Andrew R. Hoffman; Ji-Fan Hu

Dysregulation of the insulin-like growth factor type I receptor (IGF1R) has been implicated in the progression and therapeutic resistance of malignancies. In acute myeloid leukemia (AML) cells, IGF1R is one of the most abundantly phosphorylated receptor tyrosine kinases, promoting cell growth through the PI3K/Akt signaling pathway. However, little is known regarding the molecular mechanisms underlying IGF1R gene dysregulation in cancer. We discovered a novel intragenic long noncoding RNA (lncRNA) within the IGF1R locus, named IRAIN, which is transcribed in an antisense direction from an intronic promoter. The IRAIN lncRNA was expressed exclusively from the paternal allele, with the maternal counterpart being silenced. Using both reverse transcription-associated trap and chromatin conformation capture assays, we demonstrate that this lncRNA interacts with chromatin DNA and is involved in the formation of an intrachromosomal enhancer/promoter loop. Knockdown of IRAIN lncRNA with shRNA abolishes this intrachromosomal interaction. In addition, IRAIN was downregulated both in leukemia cell lines and in blood obtained from high-risk AML patients. These data identify IRAIN as a new imprinted lncRNA that is involved in long-range DNA interactions.


International Journal of Cancer | 2014

An intragenic long noncoding RNA interacts epigenetically with the RUNX1 promoter and enhancer chromatin DNA in hematopoietic malignancies

Hong Wang; Wei Li; Rui Guo; Jingnan Sun; Jiuwei Cui; Guanjun Wang; Andrew R. Hoffman; Ji-Fan Hu

RUNX1, a master regulator of hematopoiesis, is the most commonly perturbed target of chromosomal abnormalities in hematopoietic malignancies. The t(8;21) translocation is found in 30–40% of cases of acute myeloid leukemia (AML). Recent whole‐exome sequencing also reveals mutations and deletions of RUNX1 in some solid tumors. We describe a RUNX1‐intragenic long noncoding RNA RUNXOR that is transcribed as unspliced transcript from an upstream overlapping promoter. RUNXOR was upregulated in AML samples and in response to Ara‐C treatment in vitro. RUNXOR utilizes its 3′‐terminal fragment to directly interact with the RUNX1 promoter and enhancers and participates in the orchestration of an intrachromosomal loop. The 3′ region of RUNXOR also participates in long‐range interchromosomal interactions with chromatin regions that are involved in multiple RUNX1 translocations. These data suggest that RUNXOR noncoding RNA may function as a previously unidentified candidate component that is involved in chromosomal translocation in hematopoietic malignancies.


Experimental and Therapeutic Medicine | 2016

Expression profile analysis based on DNA microarray for patients undergoing off-pump coronary artery bypass surgery.

Yunpeng Sun; Yongsheng Gao; Jingnan Sun; Xuguang Liu; Dashi Ma; Chunye Ma; Yong Wang

Off-pump coronary artery bypass (OPCAB) surgery is the most effective treatment for coronary heart disease. The aim of this study was to explore the effects of OPCAB on the basis of the associated molecular mechanisms. GSE12486 expression profiles downloaded from the Gene Expression Omnibus database (GEO) were analyzed to identify the differentially expressed genes (DEGs). Principal component analysis (PCA) was conducted based on the expression profiles of DEGs. Function and pathway enrichment of upregulated DEGs was performed, followed by protein-protein interaction (PPI) network construction. Gene Set Enrichment Analysis (GSEA) was used for miRNA enrichment analysis based on expression profiles and prediction of their association with the disease. Cytoscape was applied to construct miRNA regulatory networks of DEGs. In total 64 DEGs were identified, including 63 upregulated and 1 downregulated gene. The first principal component in the PCA analysis was able to distinguish between pre- and post-OPCAB samples. Upregulated DEGs mainly enriched 20 Gene Ontology terms, such as chemokine activity, and 5 pathways including the chemokine signaling pathway. The constructed PPI network contained 234 edges and 55 nodes, and 10 upregulated hub nodes, including FBJ murine osteosarcoma viral oncogene homolog (FOS), were screened. A total of 36 miRNAs, including MIR-224 and MIR-7, were screened by GSEA enrichment analysis. A miRNA regulatory network including 176 edges and 97 nodes was constructed, showing the regulatory relationships between miRNAs and DEGs. For example, early growth response 2 (EGR2) was regulated by 8 miRNAs including MIR-150, MIR-142-3P, MIR-367 and MIR-224. The identified DEGs might play important roles in patients pre- and post-OPCAB surgery via the regulation of associated genes.


Molecular therapy. Nucleic acids | 2018

Targeting the IGF1R Pathway in Breast Cancer Using Antisense lncRNA-Mediated Promoter cis Competition

Lingling Pian; Xue Wen; Lihua Kang; Zhaozhi Li; Yuanyuan Nie; Zhonghua Du; Dehai Yu; Lei Zhou; Lin Jia; Naifei Chen; Dan Li; Songling Zhang; Wei Li; Andrew R. Hoffman; Jingnan Sun; Jiuwei Cui; Ji-Fan Hu

Aberrant insulin-like growth factor I receptor (IGF1R) signaling pathway serves as a well-established target for cancer drug therapy. The intragenic antisense long noncoding RNA (lncRNA) IRAIN, a putative tumor suppressor, is downregulated in breast cancer cells, while IGF1R is overexpressed, leading to an abnormal IGF1R/IRAIN ratio that promotes tumor growth. To precisely target this pathway, we developed an “antisense lncRNA-mediated intragenic cis competition” (ALIC) approach to therapeutically correct the elevated IGF1R/IRAIN bias in breast cancer cells. We used CRISPR-Cas9 gene editing to target the weak promoter of IRAIN antisense lncRNA and showed that in targeted clones, intragenic activation of the antisense lncRNA potently competed in cis with the promoter of the IGF1R sense mRNA. Notably, the normalization of IGF1R/IRAIN transcription inhibited the IGF1R signaling pathway in breast cancer cells, decreasing cell proliferation, tumor sphere formation, migration, and invasion. Using “nuclear RNA reverse transcription-associated trap” sequencing, we uncovered an IRAIN lncRNA-specific interactome containing gene targets involved in cell metastasis, signaling pathways, and cell immortalization. These data suggest that aberrantly upregulated IGF1R in breast cancer cells can be precisely targeted by cis transcription competition, thus providing a useful strategy to target disease genes in the development of novel precision medicine therapies.


Canadian Journal of Cardiology | 2015

A Novel Inherited Mutation in PRKAR1A Abrogates PreRNA Splicing in a Carney Complex Family

Yunpeng Sun; Xia Chen; Jingnan Sun; Xue Wen; Xuguang Liu; Yanli Zhang; Andrew R. Hoffman; Ji-Fan Hu; Yongsheng Gao

BACKGROUND Carney complex (CNC) is an autosomal dominant inherited disease, characterized by spotty skin pigmentation, cardiac and cutaneous myxomas, and endocrine overactivity. We report on a Chinese CNC family with a novel mutation in the protein kinase A regulatory subunit 1 (PRKAR1A) gene. METHODS Target-exome sequencing was performed to identify the mutation of PRKAR1A in 2 members of the CNC family. RESULTS The proband was a young man with typical CNC, including pigmentation, cutaneous myxomas, cardiac myxoma, Sertoli cell tumour of his left testis, and multiple hypoechoic thyroid nodules. His mother also had CNC with skin pigmentation, cutaneous myxomas, and a cardiac myxoma. Target-exome capture analysis revealed that the proband and the mother carried a novel heterozygous mutation in the exon 6 splicing donor site of PRKAR1A. Sequencing analysis of myxoma messenger RNA revealed that the mutation abrogated exon 6 preRNA splicing, leading to a frameshift starting at Valine 185 and premature translation termination in intron 6. The truncated enzyme lacks the functional cyclic adenosine monophosphate (cAMP) binding domain at the C-terminus, causing PRKAR1A haploinsufficiency. CONCLUSIONS In this study we report on a novel splicing mutation in the PRKAR1A gene that adds to the genetic heterogeneity of CNC.


Oncotarget | 2018

Mutational spectrum of acute myeloid leukemia patients with double CEBPA mutations based on next-generation sequencing and its prognostic significance

Long Su; YeHui Tan; Hai Lin; XiaoLiang Liu; Li Yu; Yanping Yang; ShanShan Liu; Ou Bai; Yan Yang; Fengyan Jin; Jingnan Sun; Chunshui Liu; Qiuju Liu; Sujun Gao; Wei Li

The aim of this study was to profile the spectrum of genetic mutations in acute myeloid leukemia (AML) patients co-occurring with CEBPA double mutation (CEBPAdm). Between January 1, 2012, and June 30, 2017, 553 consecutive patients with de novo AML were screened for CEBPA mutations. Out of these, 81 patients classified as CEBPAdm were analyzed further by a sensitive next-generation sequencing assay for mutations in 112 candidate genes. Within the CEBPA gene itself, we found 164 mutations. The most common mutated sites were c.936_937insGAG (n = 11/164, 6.71%) and c.939_940insAAG (n = 11/164, 6.71%), followed by c.68dupC (n = 10/164, 6.10%). The most common co-occurring mutations were found in the CSF3R (n = 16/81, 19.75%), WT1 (n = 15/81, 18.52%), and GATA2 (n = 13/81, 16.05%) genes. Patients with CSF3R mutations had an inferior four-year relapse-free survival (RFS) than those with the wild-type gene (15.3% versus 46.8%, respectively; P = 0.021). Patients with WT1 mutations had an inferior five-year RFS compared with those without such mutations (0% versus 26.6%, respectively, P = 0.003). However, GATA2, CSF3R, WT1 mutations had no significant influence on the overall survival. There were some differences in the location of mutational hotspots within the CEBPA gene, as well as hotspots of other co-occurring genetic mutations, between AML patients from Chinese and Caucasian populations. Some co-occurring mutations may be potential candidates for refining the prognoses of AML patients with CEBPAdm in the Chinese population.


Hematological Oncology | 2018

Long noncoding RNAs and their epigenetic function in hematological diseases

Hanying Huang; Jingnan Sun; Yunpeng Sun; Cong Wang; Sujun Gao; Wei Li; Ji-Fan Hu

Recent discoveries demonstrate the importance of long noncoding RNA (lncRNA) in the regulation of multiple major processes impacting development, differentiation, and metastasis of hematological diseases through epigenetic mechanisms. In contrast to genetic changes, epigenetic modification does not modify genes but is frequently reversible, thus providing opportunities for targeted treatment using specific inhibitors. In this review, we will summarize the function and epigenetic mechanism of lncRNA in malignant hematologic diseases.


Biomaterials | 2012

Promotion of the induction of cell pluripotency through metabolic remodeling by thyroid hormone triiodothyronine-activated PI3K/AKT signal pathway.

Mengfei Chen; He Zhang; Jie Wu; Liang Xu; Di Xu; Jingnan Sun; Yixin He; Xin Zhou; Zhaojing Wang; Lifang Wu; Shaokun Xu; Jinsong Wang; Shu Jiang; Xiangjun Zhou; Andrew R. Hoffman; Xiang Hu; Ji-Fan Hu; Tao Li


European Journal of Cancer | 2015

Aberrant allele-switch imprinting of a novel IGF1R intragenic antisense non-coding RNA in breast cancers

Lihua Kang; Jingnan Sun; Xue Wen; Jiuwei Cui; Guanjun Wang; Andrew R. Hoffman; Ji-Fan Hu; Wei Li

Collaboration


Dive into the Jingnan Sun's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge