Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jingqi Fu is active.

Publication


Featured researches published by Jingqi Fu.


Toxicology and Applied Pharmacology | 2010

ROS signaling, oxidative stress and Nrf2 in pancreatic beta-cell function

Jingbo Pi; Qiang Zhang; Jingqi Fu; Courtney G. Woods; Yongyong Hou; Barbara E. Corkey; Sheila Collins; Melvin E. Andersen

This review focuses on the emerging evidence that reactive oxygen species (ROS) derived from glucose metabolism, such as H(2)O(2), act as metabolic signaling molecules for glucose-stimulated insulin secretion (GSIS) in pancreatic beta-cells. Particular emphasis is placed on the potential inhibitory role of endogenous antioxidants, which rise in response to oxidative stress, in glucose-triggered ROS and GSIS. We propose that cellular adaptive response to oxidative stress challenge, such as nuclear factor E2-related factor 2 (Nrf2)-mediated antioxidant induction, plays paradoxical roles in pancreatic beta-cell function. On the one hand, induction of antioxidant enzymes protects beta-cells from oxidative damage and possible cell death, thus minimizing oxidative damage-related impairment of insulin secretion. On the other hand, the induction of antioxidant enzymes by Nrf2 activation blunts glucose-triggered ROS signaling, thus resulting in reduced GSIS. These two premises are potentially relevant to impairment of beta-cells occurring in the late and early stage of Type 2 diabetes, respectively. In addition, we summarized our recent findings that persistent oxidative stress due to absence of uncoupling protein 2 activates cellular adaptive response which is associated with impaired pancreatic beta-cell function.


Environmental Health Perspectives | 2010

Low-Level Arsenic Impairs Glucose-Stimulated Insulin Secretion in Pancreatic Beta Cells: Involvement of Cellular Adaptive Response to Oxidative Stress

Jingqi Fu; Courtney G. Woods; Einav Yehuda-Shnaidman; Qiang Zhang; Victoria A. Wong; Sheila Collins; Guifan Sun; Melvin E. Andersen; Jingbo Pi

Background Chronic exposure of humans to inorganic arsenic, a potent environmental oxidative stressor, is associated with incidence of type 2 diabetes (T2D). A key driver in the pathogenesis of T2D is impairment of pancreatic β-cell function, with the hallmark of β-cell function being glucose-stimulated insulin secretion (GSIS). Reactive oxygen species (ROS) derived from glucose metabolism serve as one of the metabolic signals for GSIS. Nuclear factor-erythroid 2–related factor 2 (Nrf2) is a central transcription factor regulating cellular adaptive response to oxidative stress. Objectives We tested the hypothesis that activation of Nrf2 and induction of antioxidant enzymes in response to arsenic exposure impedes glucose-triggered ROS signaling and thus GSIS. Methods and results Exposure of INS-1(832/13) cells to low levels of arsenite led to decreased GSIS in a dose- and time-dependent fashion. Consistent with our hypothesis, a significantly enhanced Nrf2 activity, determined by its nuclear accumulation and induction of its target genes, was observed in arsenite-exposed cells. In keeping with the activation of Nrf2-mediated antioxidant response, intracellular glutathione and intracellular hydrogen peroxide–scavenging activity was dose dependently increased by arsenite exposure. Although the basal cellular peroxide level was significantly enhanced, the net percentage increase in glucose-stimulated intracellular peroxide production was markedly inhibited in arsenite-exposed cells. In contrast, insulin synthesis and the consensus GSIS pathway, including glucose transport and metabolism, were not significantly reduced by arsenite exposure. Conclusions Our studies suggest that low levels of arsenic provoke a cellular adaptive oxidative stress response that increases antioxidant levels, dampens ROS signaling involved in GSIS, and thus disturbs β-cell function.


Free Radical Biology and Medicine | 2012

Nuclear factor erythroid-derived factor 2-related factor 2 regulates transcription of CCAAT/enhancer-binding protein β during adipogenesis

Yongyong Hou; Peng Xue; Yushi Bai; Dianxin Liu; Courtney G. Woods; Kathy Yarborough; Jingqi Fu; Qiang Zhang; Guifan Sun; Sheila Collins; Jefferson Y. Chan; Masayuki Yamamoto; Melvin E. Andersen; Jingbo Pi

Nuclear factor erythroid-derived factor 2-related factor 2 (Nrf2) is a cap-n-collar basic leucine zipper transcription factor that is involved in the cellular adaptive response to oxidative stress. Our previous study reported that targeted disruption of the Nrf2 gene in mice decreases adipose tissue mass and protects against obesity induced by a high-fat diet. Deficiency of Nrf2 in preadipocytes and mouse embryonic fibroblasts led to impaired adipogenesis. Consistent with these findings, the current study found that lack of Nrf2 in primary cultured mouse preadipocytes and 3T3-L1 cells hampered adipogenic differentiation induced by hormonal cocktails. Stable knockdown of Nrf2 in 3T3-L1 cells blocked the enhanced adipogenesis caused by deficiency of kelch-like ECH-associated protein 1 (Keap1), a Cul3-adapter protein that allows for Nrf2 to be ubiquinated and degraded by the 26S protesome complex. In addition, increased production of reactive oxygen species (ROS) and activation of Nrf2 occurred at the very early stage upon adipogenic hormonal challenge in 3T3-L1 cells, followed by an immediate induction of CCAAT/enhancer-binding protein β (C/EBPβ). Knockdown of Nrf2 led to reduced expression of C/EBPβ induced by adipogenic hormonal cocktails, chemical Nrf2 activators or Keap1 silencing. Cebpβ promoter-driven reporter assays and chromatin immunoprecipitation suggested that Nrf2 associates with a consensus antioxidant response element (ARE) binding site in the promoter of the Cebpβ gene during adipogenesis and upregulates its expression. These findings demonstrate a novel role of Nrf2 beyond xenobiotic detoxification and antioxidant response, and suggest that Nrf2 is one of the transcription factors that control the early events of adipogenesis by regulating expression of Cebpβ.


Diabetes | 2013

Adipose Deficiency of Nrf2 in ob/ob Mice Results in Severe Metabolic Syndrome

Peng Xue; Yongyong Hou; Yanyan Chen; Bei Yang; Jingqi Fu; Hongzhi Zheng; Kathy Yarborough; Courtney G. Woods; Dianxin Liu; Masayuki Yamamoto; Qiang Zhang; Melvin E. Andersen; Jingbo Pi

Nuclear factor E2–related factor 2 (Nrf2) is a transcription factor that functions as a master regulator of the cellular adaptive response to oxidative stress. Our previous studies showed that Nrf2 plays a critical role in adipogenesis by regulating expression of CCAAT/enhancer-binding protein β and peroxisome proliferator–activated receptor γ. To determine the role of Nrf2 in the development of obesity and associated metabolic disorders, the incidence of metabolic syndrome was assessed in whole-body or adipocyte-specific Nrf2-knockout mice on a leptin-deficient ob/ob background, a model with an extremely positive energy balance. On the ob/ob background, ablation of Nrf2, globally or specifically in adipocytes, led to reduced white adipose tissue (WAT) mass, but resulted in an even more severe metabolic syndrome with aggravated insulin resistance, hyperglycemia, and hypertriglyceridemia. Compared with wild-type mice, WAT of ob/ob mice expressed substantially higher levels of many genes related to antioxidant response, inflammation, adipogenesis, lipogenesis, glucose uptake, and lipid transport. Absence of Nrf2 in WAT resulted in reduced expression of most of these factors at mRNA or protein levels. Our findings support a novel role for Nrf2 in regulating adipose development and function, by which Nrf2 controls the capacity of WAT expansion and insulin sensitivity and maintains glucose and lipid homeostasis.


Toxicology and Applied Pharmacology | 2009

Dose-dependent transitions in Nrf2-mediated adaptive response and related stress responses to hypochlorous acid in mouse macrophages.

Courtney G. Woods; Jingqi Fu; Peng Xue; Yongyong Hou; Linda Pluta; Longlong Yang; Qiang Zhang; Russell S. Thomas; Melvin E. Andersen; Jingbo Pi

Hypochlorous acid (HOCl) is potentially an important source of cellular oxidative stress. Human HOCl exposure can occur from chlorine gas inhalation or from endogenous sources of HOCl, such as respiratory burst by phagocytes. Transcription factor Nrf2 is a key regulator of cellular redox status and serves as a primary source of defense against oxidative stress. We recently demonstrated that HOCl activates Nrf2-mediated antioxidant response in cultured mouse macrophages in a biphasic manner. In an effort to determine whether Nrf2 pathways overlap with other stress pathways, gene expression profiling was performed in RAW 264.7 macrophages exposed to HOCl using whole genome mouse microarrays. Benchmark dose (BMD) analysis on gene expression data revealed that Nrf2-mediated antioxidant response and protein ubiquitination were the most sensitive biological pathways that were activated in response to low concentrations of HOCl (<0.35 mM). Genes involved in chromatin architecture maintenance and DNA-dependent transcription were also sensitive to very low doses. Moderate concentrations of HOCl (0.35 to 1.4 mM) caused maximal activation of the Nrf2 pathway and innate immune response genes, such as IL-1beta, IL-6, IL-10 and chemokines. At even higher concentrations of HOCl (2.8 to 3.5 mM) there was a loss of Nrf2-target gene expression with increased expression of numerous heat shock and histone cluster genes, AP-1-family genes, cFos and Fra1 and DNA damage-inducible Gadd45 genes. These findings confirm an Nrf2-centric mechanism of action of HOCl in mouse macrophages and provide evidence of interactions between Nrf2, inflammatory, and other stress pathways.


Environmental Health Perspectives | 2010

Long Isoforms of NRF1 Contribute to Arsenic-Induced Antioxidant Response in Human Keratinocytes

Rui Zhao; Yongyong Hou; Peng Xue; Courtney G. Woods; Jingqi Fu; Bo Feng; Da-Wei Guan; Guifan Sun; Jefferson Y. Chan; Michael P. Waalkes; Melvin E. Andersen; Jingbo Pi

Background Human exposure to inorganic arsenic (iAs), a potent oxidative stressor, causes various dermal disorders, including hyperkeratosis and skin cancer. Nuclear factor–erythroid 2–related factor 1 (NRF1, also called NFE2L1) plays a critical role in regulating the expression of many antioxidant response element (ARE)-dependent genes. Objectives We investigated the role of NRF1 in arsenic-induced antioxidant response and cytotoxicity in human keratinocytes. Results In cultured human keratinocyte HaCaT cells, inorganic arsenite (iAs3+) enhanced the protein accumulation of long isoforms (120–140 kDa) of NRF1 in a dose- and time-dependent fashion. These isoforms accumulated mainly in the nuclei of HaCaT cells. Selective deficiency of NRF1 by lentiviral short-hairpin RNAs in HaCaT cells [NRF1-knockdown (KD)] led to decreased expression of γ-glutamate cysteine ligase catalytic subunit (GCLC) and regulatory subunit (GCLM) and a reduced level of intracellular glutathione. In response to acute iAs3+ exposure, induction of some ARE-dependent genes, including NAD(P)H:quinone oxidoreductase 1 (NQO1), GCLC, and GCLM, was significantly attenuated in NRF1-KD cells. However, the iAs3-induced expression of heme oxygenase 1 (HMOX-1) was unaltered by silencing NRF1, suggesting that HMOX-1 is not regulated by NRF1. In addition, the lack of NRF1 in HaCaT cells did not disturb iAs3+-induced NRF2 accumulation but noticeably decreased Kelch-like ECH-associated protein 1 (KEAP1) levels under basal and iAs3+-exposed conditions, suggesting a potential interaction between NRF1 and KEAP1. Consistent with the critical role of NRF1 in the transcriptional regulation of some ARE-bearing genes, knockdown of NRF1 significantly increased iAs3+-induced cytotoxicity and apoptosis. Conclusions Here, we demonstrate for the first time that long isoforms of NRF1 contribute to arsenic-induced antioxidant response in human keratinocytes and protect the cells from acute arsenic cytotoxicity.


Free Radical Biology and Medicine | 2016

An overview of chemical inhibitors of the Nrf2-ARE signaling pathway and their potential applications in cancer therapy

Jiayu Zhu; Huihui Wang; Feng Chen; Jingqi Fu; Yuanyuan Xu; Yongyong Hou; Henry H. Kou; Cheng Zhai; M. Bud Nelson; Qiang Zhang; Melvin E. Andersen; Jingbo Pi

The Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key transcription factor regulating a wide array of genes for antioxidant and detoxification enzymes in response to oxidative and xenobiotic stress. A large number of Nrf2-antioxidant response element (ARE) activators have been screened for use as chemopreventive agents in oxidative stress-related diseases and even cancer. However, constitutive activation of Nrf2 occurs in a variety of cancers. Aberrant activation of Nrf2 is correlated with cancer progression, chemoresistance, and radioresistance. In this review, we examine recent studies of Nrf2-ARE inhibitors in the context of cancer therapy. We enumerate the possible Nrf2-inhibiting mechanisms of these compounds, their effects sensitizing cancer cells to chemotherapeutic agents, and the prospect of applying them in clinical cancer therapy.


Free Radical Biology and Medicine | 2012

Regulatory Role of KEAP1 and NRF2 in PPARγ Expression and Chemoresistance in Human Non-small Cell Lung Carcinoma Cells

Lijuan Zhan; Hao Zhang; Qiang Zhang; Courtney G. Woods; Yanyan Chen; Peng Xue; Jian Dong; Erik J. Tokar; Yuanyuan Xu; Yongyong Hou; Jingqi Fu; Kathy Yarborough; Aiping Wang; Weidong Qu; Michael P. Waalkes; Melvin E. Andersen; Jingbo Pi

The nuclear factor-E2-related factor 2 (NRF2) serves as a master regulator in cellular defense against oxidative stress and chemical detoxification. However, persistent activation of NRF2 resulting from mutations in NRF2 and/or downregulation of or mutations in its suppressor, Kelch-like ECH-associated protein 1 (KEAP1), is associated with tumorigenicity and chemoresistance of non-small-cell lung carcinomas (NSCLCs). Thus, inhibiting the NRF2-mediated adaptive antioxidant response is widely considered a promising strategy to prevent tumor growth and reverse chemoresistance in NSCLCs. Unexpectedly, stable knockdown of KEAP1 by lentiviral shRNA sensitized three independent NSCLC cell lines (A549, HTB-178, and HTB-182) to multiple chemotherapeutic agents, including arsenic trioxide (As(2)O(3)), etoposide, and doxorubicin, despite moderately increased NRF2 levels. In lung adenocarcinoma epithelial A549 cells, silencing of KEAP1 augmented the expression of peroxisome proliferator-activated receptor γ (PPARγ) and genes associated with cell differentiation, including E-cadherin and gelsolin. In addition, KEAP1-knockdown A549 cells displayed attenuated expression of the proto-oncogene cyclin D1 and markers for cancer stem cells (CSCs) and reduced nonadherent sphere formation. Moreover, deficiency of KEAP1 led to elevated induction of PPARγ in response to As(2)O(3). Pretreatment of A549 cells with PPARγ agonists activated PPARγ and augmented the cytotoxicity of As(2)O(3). A mathematical model was formulated to advance a hypothesis that differential regulation of PPARγ and detoxification enzymes by KEAP1 and NRF2 may underpin the observed landscape changes in chemosensitivity. Collectively, suppression of KEAP1 expression in human NSCLC cells resulted in sensitization to chemotherapeutic agents, which may be attributed to activation of PPARγ and subsequent alterations in cell differentiation and CSC abundance.


Environmental Health Perspectives | 2012

Cross-Regulations among NRFs and KEAP1 and Effects of their Silencing on Arsenic-Induced Antioxidant Response and Cytotoxicity in Human Keratinocytes

Rui Zhao; Yongyong Hou; Qiang Zhang; Courtney G. Woods; Peng Xue; Jingqi Fu; Kathy Yarborough; Da-Wei Guan; Melvin E. Andersen; Jingbo Pi

Background: Nuclear factor E2-related factors (NRFs), including NRF2 and NRF1, play critical roles in mediating the cellular adaptive response to oxidative stress. Human exposure to inorganic arsenic, a potent oxidative stressor, causes various dermal disorders, including hyperkeratosis and skin cancer. Objective: We investigated the cross-regulations among NRF2, NRF1, and KEAP1, a cullin-3–adapter protein that allows NRF2 to be ubiquinated and degraded by the proteasome complex, in arsenic-induced antioxidant responses. Results: In human keratinocyte HaCaT cells, selective knockdown (KD) of NRF2 by lentiviral short hairpin RNAs (shRNAs) significantly reduced the expression of many antioxidant enzymes and sensitized the cells to acute cytotoxicity of inorganic arsenite (iAs3+). In contrast, silencing KEAP1 led to a dramatic resistance to iAs3+-induced apoptosis. Pretreatment of HaCaT cells with NRF2 activators, such as tert-butylhydroquinone, protects the cells against acute iAs3+ toxicity in an NRF2-dependent fashion. Consistent with the negative regulatory role of KEAP1 in NRF2 activation, KEAP1-KD cells exhibited enhanced transcriptional activity of NRF2 under nonstressed conditions. However, deficiency in KEAP1 did not facilitate induction of NRF2-target genes by iAs3+. In addition, NRF2 silencing reduced the expression of KEAP1 at transcription and protein levels but increased the protein expression of NRF1 under the iAs3+-exposed condition. In contrast, silencing KEAP1 augmented protein accumulation of NRF2 under basal and iAs3+-exposed conditions, whereas the iAs3+-induced protein accumulation of NRF1 was attenuated in KEAP1-KD cells. Conclusions: Our studies suggest that NRF2, KEAP1, and NRF1 are coordinately involved in the regulation of the cellular adaptive response to iAs3+-induced oxidative stress.


Toxicology and Applied Pharmacology | 2012

Deficiency in the nuclear factor E2-related factor 2 renders pancreatic β-cells vulnerable to arsenic-induced cell damage.

Bei Yang; Jingqi Fu; Hongzhi Zheng; Peng Xue; Kathy Yarborough; Courtney G. Woods; Yongyong Hou; Qiang Zhang; Melvin E. Andersen; Jingbo Pi

Chronic human exposure to inorganic arsenic (iAs), a potent environmental oxidative stressor, is associated with increased prevalence of type 2 diabetes, where impairment of pancreatic β-cell function is a key pathogenic factor. Nuclear factor E2-related factor 2 (Nrf2) is a central transcription factor regulating cellular adaptive response to oxidative stress. However, persistent activation of Nrf2 in response to chronic oxidative stress, including inorganic arsenite (iAs³⁺) exposure, blunts glucose-triggered reactive oxygen species (ROS) signaling and impairs glucose-stimulated insulin secretion (GSIS). In the current study, we found that MIN6 pancreatic β-cells with stable knockdown of Nrf2 (Nrf2-KD) by lentiviral shRNA and pancreatic islets isolated from Nrf2-knockout (Nrf2⁻/⁻) mice exhibited reduced expression of several antioxidant and detoxification enzymes in response to acute iAs³⁺ exposure. As a result, Nrf2-KD MIN6 cells and Nrf2⁻/⁻ islets were more susceptible to iAs³⁺ and monomethylarsonous acid (MMA³⁺)-induced cell damage, as measured by decreased cell viability, augmented apoptosis and morphological change. Pretreatment of MIN6 cells with Nrf2 activator tert-butylhydroquinone protected the cells from iAs³⁺-induced cell damage in an Nrf2-dependent fashion. In contrast, antioxidant N-acetyl cysteine protected Nrf2-KD MIN6 cells against acute cytotoxicity of iAs³⁺. The present study demonstrates that Nrf2-mediated antioxidant response is critical in the pancreatic β-cell defense mechanism against acute cytotoxicity by arsenic. The findings here, combined with our previous results on the inhibitory effect of antioxidants on ROS signaling and GSIS, suggest that Nrf2 plays paradoxical roles in pancreatic β-cell dysfunction induced by environmental arsenic exposure.

Collaboration


Dive into the Jingqi Fu's collaboration.

Top Co-Authors

Avatar

Qiang Zhang

Research Triangle Park

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peng Xue

Research Triangle Park

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bei Yang

China Medical University (PRC)

View shared research outputs
Top Co-Authors

Avatar

Yanyan Chen

Research Triangle Park

View shared research outputs
Top Co-Authors

Avatar

Jian Dong

Research Triangle Park

View shared research outputs
Researchain Logo
Decentralizing Knowledge