Jingquan Lin
Changchun University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jingquan Lin.
Journal of Physics D | 2013
Agnes Nakimana; Haiyan Tao; Xun Gao; Zuoqiang Hao; Jingquan Lin
Aluminum alloy was analysed by using femtosecond laser-induced breakdown spectroscopy under argon, air and helium environments at pressures ranging from 1 to 80?kPa. The results reveal that both spectra intensity and lines detection are significantly influenced by the ambient conditions. In all ambient gases, as the pressure increases the emitted light initially increases, attains its maximum intensity and then decreases with further increase in pressure. It is also observed that some lines are well detected at low pressures in argon while they are absent at the same pressures in helium. In addition, plasma parameters such as electron densities and electron temperature have been investigated at different pressures in the three gases. Hotter and denser plasma has been observed in argon than that in air and helium. Furthermore, it is noted that plasma parameters at relative low pressures of argon (1?kPa) are similar to those obtained at relative high pressures of helium (80?kPa). The optimum conditions for the use of argon and helium as ambient gases have been determined. In fact, argon provides the best environment of femtosecond laser-induced breakdown spectroscopy only at relative low pressures while helium constitutes a good environment only at relative high pressures.
Optics Letters | 2012
Kaimin Guo; Jingquan Lin; Zuoqiang Hao; Xun Gao; Zhenming Zhao; Changkai Sun; B. Z. Li
The abilities to trigger and guide high-voltage discharge by using single and <em>multiple filaments</em> (MFs) are experimentally studied. It is shown that the discharge voltage threshold can be reduced significantly in both regimes of single and MF; however, the MF does not gain a larger reduction than a single filament. This behavior of the MF is attributed to the single discharge path rather than simultaneous multiple ones as one might expect during the discharge process.
Journal of Applied Physics | 2015
Alemayehu Nana Koya; Boyu Ji; Zuoqiang Hao; Jingquan Lin
Combined effects of polarization, split gap, and rod width on the resonance hybridization and near field properties of strongly coupled gold dimer-rod nanosystem are comparatively investigated in the light of the constituent nanostructures. By aligning polarization of the incident light parallel to the long axis of the nanorod, introducing small split gaps to the dimer walls, and varying width of the nanorod, we have simultaneously achieved resonance mode coupling, huge near field enhancement, and prolonged plasmon lifetime. As a result of strong coupling between the nanostructures and due to an intense confinement of near fields at the split and dimer-rod gaps, the extinction spectrum of the coupled nanosystem shows an increase in intensity and blueshift in wavelength. Consequently, the near field lifespan of the split-nanosystem is prolonged in contrast to the constituent nanostructures and unsplit-nanosystem. On the other hand, for polarization of the light perpendicular to the long axis of the nanorod...
Optics Letters | 2014
Acner Camino; Zuoqiang Hao; Xu Liu; Jingquan Lin
Generation of a high spectral power supercontinuum (SC) is reported from controlled multifilamentation of femtosecond pulses in fused silica. The use of a microlens array allows the manipulation of the filamentation pattern under very high-incident laser pulse energy without sample damage and, consequently, compared with using a single focusing lens, higher power of SC generation with a similar spectral broadening can be obtained. Moreover, the role of the interplay between diffraction pattern and proximity to the focus of the microlens array in SC generation is discussed.
Optics Express | 2013
Acner Camino; Zuoqiang Hao; Xu Liu; Jingquan Lin
Deterministic wavelength-dependent multifilamentation is controlled in fused silica by adjusting the diffraction pattern generated by a loosely focusing 2D periodic lens array. By simply translating the sample along the propagation axis the number and distribution of filaments can be controlled and are in agreement with the results of linear diffraction simulations. The loose focusing geometry allows for long filaments whose distribution is conserved along their propagation inside the sample. The effect of incident energy and polarization on filament number is also studied. Laser filamentation controlled by a microlens array could be a promising method for easy and fast 3D track writing in transparent materials.
Applied Physics Letters | 2012
Haiyan Tao; Jingquan Lin; Zuoqiang Hao; Xun Gao; Xiaowei Song; Changkai Sun; Xin Tan
Nano- and microscale structures on a material surface formed by femtosecond laser processing have greatly changed optical characteristics, wettability, as well as other properties of the material. In this work, we report the formation of nano- and microscale structures on a spherical Al surface with femtosecond laser filament, and find that the filament-processed surface has a strong light-trapping ability from UV to IR (0.2–2.5 μm). Our result demonstrates that this method can be used to process a spherical surface without the complexity of a 4-axis sample control, and in principle, it is applicable to any non-planar sample.
Journal of Applied Physics | 2013
Yu Ren; Mostafa Alshershby; Jiang Qin; Zuoqiang Hao; Jingquan Lin
Microwave guiding along single plasma filament generated through the propagation of femtosecond (fs) laser pulses in air has been demonstrated over a distance of about 6.5 cm, corresponding to a microwave signal intensity enhancement of more than 3-fold over free space propagation. The current propagation distance along the fs laser filament is in agreement with the calculations and limited by the relatively high resistance of the single plasma filament. Using a single fs laser filament to channel microwave radiation considerably alleviate requirements to the power of fs laser pulses compared to the case of the circular filaments waveguide. In addition, it can be used as a simple and non-intrusive method to obtain the basic parameters of laser-generated plasma filament.
Applied physics reviews | 2017
Alemayehu Nana Koya; Jingquan Lin
The unique property of a charge transfer plasmon (CTP) that emerges in conductively bridged plasmonic nanoparticles makes linked nanosystems suitable candidates for building artificial molecules, nanomotors, sensors, and other optoelectronic devices. In this focused review, we present recent theoretical and experimental developments in fundamentals and applications of CTPs in conductively coupled metallic nanoparticles of various sizes and shapes. The underlying physics of charge transfer in linked nanoparticles with nanometer- and atomic-scale inter-particle gap is described from both classical and quantum mechanical perspectives. In addition, we present a detailed discussion of mechanisms of controlling charge transfer and tuning the corresponding CTP spectra in bridged nanoparticles as functions of junction conductance and nanoparticle parameters. Furthermore, the active control of reversible switching between capacitive and conductive coupling in plasmonic nanoshell particles and dynamic evolution of ...
New Journal of Physics | 2016
Boyu Ji; Jiang Qin; Haiyan Tao; Zuoqiang Hao; Jingquan Lin
We demonstrate subwavelength imaging and control of localized near-field distribution under resonant and off-resonant excitation of identical gold bowtie nanostructures through photoemission electron microscopy. Control of the near-field distribution was realized by polarization rotation of single femtosecond laser pulse and variation of the phase delay of two orthogonally polarized femtosecond laser pulses. We show that the localized optical near-field distribution can be well controlled either among the corners of the nano-prisms in the bowtie for resonant excitation or the edges for off-resonant excitation. A better visualization of the PEEM image is achieved for resonant excitation than in the case of off-resonant excitation. The experimental results of the optical near-field distribution control are well reproduced by finite-difference time-domain simulations and understood by linear combination of electric charge distribution of the bowtie by s- and p- polarized light illumination. In addition, a shift of the near-field excitation position with inverted or unchanged phase, alternatively an un-shift of the excitation position but only with inverted phase of the near-field, can be realized by rotating the polarization angle of a single pulse and coherent control of two orthogonally polarized fs laser pulses.
Beilstein Journal of Nanotechnology | 2015
Liwei Liu; Siyi Hu; Yin-ping Dou; Tian-hang Liu; Jingquan Lin; Yue Wang
Summary This study investigates near-infrared region Ag2S quantum dots (QDs) and their nonlinear optical response under 532 nm nanosecond laser pulses. Our experimental result shows that nonlinear transmission is reduced from 0.084 to 0.04. The observed narrowing behavior of the output pulse width shows superior optical limiting. We discuss the physical mechanisms responsible for the nonlinear optical response of the QDs. The average size of the nanocrystals was 5.5 nm. Our results suggest the possibility of using these Ag2S QDs for photoelectric, biosensor, optical ranging, and self-adaptive technologies.