Jingwu Xie
University of Texas Medical Branch
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jingwu Xie.
Molecular Cancer | 2004
Chengxin Li; Xiaoli Zhang; Sumin Chi; Nonggao He; Kai Chen; Frank McCormick; Zoran Gatalica; Jingwu Xie
BackgroundThe hedgehog pathway plays a critical role in the development of prostate. However, the role of the hedgehog pathway in prostate cancer is not clear. Prostate cancer is the second most prevalent cause of cancer death in American men. Therefore, identification of novel therapeutic targets for prostate cancer has significant clinical implications.ResultsHere we report that activation of the hedgehog pathway occurs frequently in advanced human prostate cancer. We find that high levels of hedgehog target genes, PTCH1 and hedgehog-interacting protein (HIP), are detected in over 70% of prostate tumors with Gleason scores 8–10, but in only 22% of tumors with Gleason scores 3–6. Furthermore, four available metastatic tumors all have high expression of PTCH1 and HIP. To identify the mechanism of the hedgehog signaling activation, we examine expression of Su(Fu) protein, a negative regulator of the hedgehog pathway. We find that Su(Fu) protein is undetectable in 11 of 27 PTCH1 positive tumors, two of them contain somatic loss-of-function mutations of Su(Fu). Furthermore, expression of sonic hedgehog protein is detected in majority of PTCH1 positive tumors (24 out of 27). High levels of hedgehog target genes are also detected in four prostate cancer cell lines (TSU, DU145, LN-Cap and PC3). We demonstrate that inhibition of hedgehog signaling by smoothened antagonist, cyclopamine, suppresses hedgehog signaling, down-regulates cell invasiveness and induces apoptosis. In addition, cancer cells expressing Gli1 under the CMV promoter are resistant to cyclopamine-mediated apoptosis. All these data suggest a significant role of the hedgehog pathway for cellular functions of prostate cancer cells.ConclusionOur data indicate that activation of the hedgehog pathway, through loss of Su(Fu) or overexpression of sonic hedgehog, may involve tumor progression and metastases of prostate cancer. Thus, targeted inhibition of hedgehog signaling may have significant implications of prostate cancer therapeutics.
Oncogene | 2010
Ling Yang; G Xie; Qipeng Fan; Jingwu Xie
The hedgehog pathway, initially discovered by two Nobel laureates Drs E Wieschaus and C Nusslein-Volhard in Drosophila, is a major regulator for cell differentiation, tissue polarity and cell proliferation. Studies from many laboratories reveal activation of this pathway in a variety of human cancer, including basal cell carcinomas (BCCs), medulloblastomas, leukemia, gastrointestinal, lung, ovarian, breast and prostate cancers. It is thus believed that targeted inhibition of hedgehog signaling may be effective in treatment and prevention of human cancer. Even more exciting is the discovery and synthesis of specific signaling antagonists for the hedgehog pathway, which have significant clinical implications in novel cancer therapeutics. In this review, we will summarize major advances in the last 2 years in our understanding of hedgehog signaling activation in human cancer, interactions between hedgehog signaling and other pathways in carcinogenesis, potential antagonists for hedgehog signaling inhibition and their clinical implications for human cancer treatment.
Cancer Research | 2004
Mohammad Athar; Chengxin Li; Xiuwei Tang; Sumin Chi; Xiaoli Zhang; Arianna L. Kim; Stephen K. Tyring; Levy Kopelovich; Jennifer Hebert; Ervin H. Epstein; David R. Bickers; Jingwu Xie
Abnormal activation of the hedgehog-signaling pathway is the pivotal abnormality driving the growth of basal cell carcinomas (BCCs), the most common type of human cancer. Antagonists of this pathway such as cyclopamine may therefore be useful for treatment of basal cell carcinomas and other hedgehog-driven tumors. We report here that chronic oral administration of cyclopamine dramatically reduces (∼66%) UVBinduced basal cell carcinoma formation in Ptch1+/− mice. Fas expression is low in human and murine basal cell carcinomas but is up-regulated in the presence of the smoothened (SMO) antagonist, cyclopamine, both in vitro in the mouse basal cell carcinoma cell line ASZ001 and in vivo after acute treatment of mice with basal cell carcinomas. This parallels an elevated rate of apoptosis. Conversely, expression of activated SMO in C3H10T1/2 cells inhibits Fas expression. Fas/Fas ligand interactions are necessary for cyclopamine-mediated apoptosis in these cells, a process involving caspase-8 activation. Our data provide strong evidence that cyclopamine and perhaps other SMO antagonists are potent in vivo inhibitors of UVB-induced basal cell carcinomas in Ptch1+/− mice and likely in humans because the majority of human basal cell carcinomas manifest mutations in PTCH1 and that a major mechanism of their inhibitory effect is through up-regulation of Fas, which augments apoptosis.
International Journal of Cancer | 2006
Xiaoli Ma; Yuanxin Zhang; Xiaoli Zhang; Jing He; Shuhong Huang; Kai Chen; Josh Sultz; Patrick A. Adegboyega; Hongwei Zhang; Jingwu Xie
The hedgehog pathway plays a critical role in the development of the foregut. However, the role of the hedgehog pathway in primary esophageal cancers is not well studied. Here, we report that elevated expression of hedgehog target genes occurs in 14 of 22 primary esophageal cancers. The hedgehog signaling activation is not associated with tumor subtypes, stages, or differentiation. While the sonic hedgehog (Shh) transcript is localized to the tumor tissue, expression of Gli1 and PTCH1 is observed both in the tumor and in the stroma. We discovered that 4 esophageal squamous cell carcinomas, which overexpress Shh, have genomic amplification of the Shh gene. Treatment of esophageal cancer cells with smoothened antagonist, KAAD‐cyclopamine, or the neutralizing antibodies of Shh reduces cell growth and induces apoptosis. Overexpression of Gli1 under the CMV promoter renders these cells resistant to the treatments. Thus, our results indicate that elevated expression of Shh and its target genes is quite common in esophageal cancers. Our data also indicate that downregulation of Gli1 expression may be an important mechanism by which KAAD‐cyclopamine inhibits growth and induces apoptosis in esophageal cancer cells (supplementary material for this article can be found on the International Journal of Cancer website at http://www.interscience.wiley.com/jpages/0020‐7136/suppmat/index.html).
Journal of Biological Chemistry | 2006
Sumin Chi; Xiaoli Zhang; Jingwu Xie
The hedgehog (Hh) pathway plays a critical role during development of embryos and cancer. Although the molecular basis by which protein kinase A (PKA) regulates the stability of hedgehog downstream transcription factor cubitus interruptus, the Drosophila homologue of vertebrate Gli molecules, is well documented, the mechanism by which PKA inhibits the functions of Gli molecules in vertebrates remains elusive. Here, we report that activation of PKA retains Gli1 in the cytoplasm. Conversely, inhibition of PKA activity promotes nuclear accumulation of Gli1. Mutation analysis identifies Thr374 as a major PKA site determining Gli1 protein localization. In the three-dimensional structure, Thr374 resides adjacent to the basic residue cluster of the nuclear localization signal (NLS). Phosphorylation of this Thr residue is predicted to alter the local charge and consequently the NLS function. Indeed, mutation of this residue to Asp (Gli1/T374D) results in more cytoplasmic Gli1 whereas a mutation to Lys (Gli1/T374K) leads to more nuclear Gli1. Disruption of the NLS causes Gli1/T374K to be more cytoplasmic. We find that the change of Gli1 localization is correlated with the change of its transcriptional activity. These data provide evidence to support a model that PKA regulates Gli1 localization and its transcriptional activity, in part, through modulating the NLS function.
Journal of Biological Chemistry | 2006
Jing He; Arwen A. Stelter; Chengxin Li; Xiaoli Zhang; Mala Sinha; Bruce A. Luxon; Jingwu Xie
The hedgehog (Hh) signaling pathway is essential for embryonic development and carcinogenesis. Activation of Hh signaling has been identified in several types of gastrointestinal cancers, including esophageal, gastric, pancreatic, and liver cancers. Several recent studies suggest that Hh signaling activation can inhibit Wnt signaling. However, the molecular basis underlying this inhibition remains unclear. As transcription factors in the Hh signaling pathway, Gli molecules transform cells in culture, and their expression are associated with cancer development. Here we report that expression of a secreted frizzled-related protein-sFRP-1 in mouse embryonic fibroblasts is dependent on Gli1 and Gli2. In human gastric cancer cells, inhibition of Hh signaling reduces the level of sFRP-1 transcript, whereas ectopic expression of Gli1 increases the level of sFRP-1 transcript. Results from chromatin immunoprecipitation indicate that Gli1 is involved in transcriptional regulation of sFRP-1. In 293 cells with Gli1 expression, Wnt-1-mediated β-catenin accumulation in the cytosol and DKK1 expression are all abrogated, which can be reversed by inhibiting sFRP-1 expression. Furthermore, while SIIA cells do not respond to Wnt-1-conditioned medium, inhibition of Hh signaling by smoothened (SMO) antagonist KAAD-cyclopamine (keto-N-aminoethylaminocaproyldihydrocinnamoylcyclopamine) leads to Wnt1-mediated β-catenin accumulation in the cytosol. These data indicate that sFRP-1, a target gene of the hedgehog pathway, is involved in cross-talk between the hedgehog pathway and the Wnt pathway.
Oncogene | 2004
Chengxin Li; Sumin Chi; Nonggao He; Xiaoli Zhang; Oivin Guicherit; Richard F. Wagner; Stephen K. Tyring; Jingwu Xie
Basal cell carcinoma (BCC), the most common form of human cancer, is understood to be associated with activation of the sonic hedgehog pathway, through loss-of-function mutations of tumor suppressor PTCH1 or gain-of-function mutations of smoothened. Interferon (IFN)-based therapy is quite effective in BCC treatment, but the molecular basis is not well understood. Here we report a novel mechanism by which IFNα mediates apoptosis in BCCs. In the presence of IFNα, we observed increased apoptosis in a BCC cell line ASZ001, in which PTC is null, and therefore with constitutive activation of the sonic hedgehog pathway. We demonstrate that SMO agonist Ag-1.4 mediates activation of extracellular signal-regulated kinase (Erk) phosphorylation, which is abrogated by IFNα in sonic hedgehog responsive C3H10T1/2 cells. In transient transfection experiments, we demonstrate that IFNα inhibits Erk phosphorylation and serum response element activation induced by expression of SMO, Gli1, PDGFRα and activated Raf, but not activated mitogen-activated Erk-regulating kinase (Mek), suggesting that IFNα targets mainly on Mek function. We further show that IFNα induces expression of Fas in BCC cells through interfering with Mek function. The role of the Fas-L/Fas signaling axis in IFNα-mediated apoptosis is demonstrated by the fact that addition of Fas-L neutralizing antibodies, just as caspase-8 inhibitor Z-IETD-FMK, effectively prevents IFNα-mediated apoptosis. Thus, our data indicate that IFNα-based BCC therapy induces Fas expression and apoptosis through interfering with Mek function.
Modern Pathology | 2007
Wendell W. Tang; Arwen A. Stelter; Samuel W. French; Steven S. Shen; Suimin Qiu; Rose Venegas; Julie Wen; Hui Qun Wang; Jingwu Xie
Solid pseudopapillary tumor of pancreas (SPT) is a rare neoplasm that occurs most often in young females with the two distinct features, the ‘solid-cystic’ gross appearance, and the ‘solid-pseudopapillary’ microscopic pattern. It has been reported that almost all SPT tumors contain a mutation in the β-catenin gene; however, the histogenetic origin of this tumor remains largely a mystery. E-cadherin is a cell adhesion molecule that links to catenins to form cell adhesion junctions, which is associated with the cytoskeleton formation. In this study, we examined the expression of E-cadherin and β-catenin from SPT in an attempt to determine the molecular basis for the unusual morphology of this tumor. Nine cases of SPT were retrieved from Surgical Pathologic Archives of three institutions, including one male and eight females. H&E slides of each case were reviewed to confirm the diagnosis. The β-catenin gene was sequenced in one case. E-cadherin and β-catenin immunostains, were performed on all nine cases. Sequencing analysis on one case showed a point mutation of the β-catenin gene, confirming previous findings that almost all SPT tumors contain mutation in the β-catenin gene. Immunostains showed that, in both solid and pseudopapillary areas, all the tumor cells lost expression of E-cadherin, and β-catenin nuclear expression was observed in all cases. Our findings suggest that loss of cytoplasmic β-catenin protein in the cell adhesion complex due to β-catenin gene mutation, results in instability of the complex, loss of E-cadherin in cell membrane, and eventually dissociation of the tumor cells to form the pseudopapillary pattern.
Journal of Biological Chemistry | 2010
Qipeng Fan; Miao He; Tao Sheng; Xiaoli Zhang; Mala Sinha; Bruce A. Luxon; Xingbo Zhao; Jingwu Xie
Hedgehog (Hh) signaling, via the key signal transducer Smoothened (SMO) and Gli transcription factors, is essential for embryonic development and carcinogenesis. At present, the molecular mechanism of Hh signaling-mediated carcinogenesis is not completely understood. Using a mouse model (K14cre/R26SmoM2) of SMO-mediated basal cell carcinoma development, we identified TGFβ2 as a major Hh-regulated gene. TGFβ2 expression was high in the keratinocytes, with activated TGFβ signaling (indicated by elevated expression of phosphorylated SMAD2/3) detected in both tumor and stroma. The significance of TGFβ signaling for SMO function was demonstrated in two assays. Down-regulation of TGFβ2 expression prevented Hh signaling-dependent osteoblast differentiation and motor neuron differentiation. Furthermore, inhibition of TGFβ signaling by TGFβ receptor I inhibitor SD208 significantly reduced tumor area in K14cre/R26SmoM2 mice. Tumor shrinkage in mice was associated with an increased number of lymphocytes, suggesting an immune suppression role of TGFβ signaling. The relevance of our results to human cancer is reflected by the fact that human basal cell carcinomas, which almost always harbor activated Hh signaling, have activated TGFβ signaling, as indicated by high levels of phosphorylated SMAD2 and SMAD3 in tumor and stroma. Together, our data indicate that TGFβ signaling is critical for Hh signaling-mediated carcinogenesis.
Journal of Biological Chemistry | 2009
Qingsong Cai; Jing Li; Tianyan Gao; Jingwu Xie; B. Mark Evers
Constitutive activation of the hedgehog pathway is implicated in the development of many human malignancies; hedgehog targets, PTCH1 and Gli1, are markers of hedgehog signaling activation and are expressed in most hedgehog-associated tumors. Protein kinase Cδ (PKCδ) generally slows proliferation and induces cell cycle arrest of various cell lines. In this study, we show that activated PKCδ (wild-type PKCδ stimulated by phorbol 12-myristate 13-acetate or constitutively active PKCδ) decreased Gli-luciferase reporter activity in NIH/3T3 cells, as well as the endogenous hedgehog-responsive gene PTCH1. In human hepatoma (i.e. Hep3B) cells, wild-type PKCδ and constitutively active PKCδ decreased the expression levels of endogenous Gli1 and PTCH1. In contrast, PKCδ siRNA increased the expression levels of these target genes. Silencing of PKCδ by siRNA rescued the inhibition of cell growth by KAAD-cyclopamine, an antagonist of hedgehog signaling element Smoothened, suggesting that PKCδ acts downstream of Smoothened. The biological relevance of our study is shown in hepatocellular carcinoma where we found that hepatocellular carcinoma with detectable hedgehog signaling had weak or no detectable expression of PKCδ, whereas PKCδ highly expressing tumors had no detectable hedgehog signaling. Our results demonstrate that PKCδ alters hedgehog signaling by inhibition of Gli protein transcriptional activity. Furthermore, our findings suggest that, in certain cancers, PKCδ plays a role as a negative regulator of tumorigenesis by regulating hedgehog signaling.