Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jingxian Yang is active.

Publication


Featured researches published by Jingxian Yang.


Journal of Biological Chemistry | 2015

CXCR4 Receptor Overexpression in Mesenchymal Stem Cells Facilitates Treatment of Acute Lung Injury in Rats

Jingxian Yang; Nan Zhang; Han-Wei Wang; Peng Gao; Qing-Ping Yang; Qingping Wen

Background: The utility of mesenchymal stem cells (MSCs) in the treatment of acute lung injury (ALI) is dependent on their ability to reach the sites of tissue damage. Results: Transduction of CXCR4 conferred efficient mobilization of MSCs. Conclusion: CXCR4 overexpression in MSCs facilitated treatment of ALI. Significance: Overexpression of CXCR4 may improve the therapeutic potential of MSCs for the treatment of diseases with tissue damage. Novel therapeutic regimens for tissue renewal incorporate mesenchymal stem cells (MSCs) as they differentiate into a variety of cell types and are a stem cell type that is easy to harvest and to expand in vitro. However, surface chemokine receptors, such as CXCR4, which are involved in the mobilization of MSCs, are expressed only on the surface of a small proportion of MSCs, and the lack of CXCR4 expression may underlie the low efficiency of homing of MSCs toward tissue damage, which results in a poor curative effect. Here, a rat CXCR4 expressing lentiviral vector was constructed and introduced into MSCs freshly prepared from rat bone marrow. The influence of CXCR4 expression on migration, proliferation, differentiation, and paracrine effects of MSCs was examined in vitro. The in vivo properties of CXCR4-MSCs were also investigated in a model of acute lung injury in rats induced by lipopolysaccharide. Expression of CXCR4 in MSCs significantly enhanced the chemotactic and paracrine characteristics of the cells in vitro but did not affect self-renewal or differentiation into alveolar and vascular endothelial cells. In vivo, CXCR4 improved MSC homing and colonization of damaged lung tissue, and furthermore, the transplanted CXCR4-MSCs suppressed the development of acute lung injury in part by modulating levels of inflammatory molecules and the neutrophil count. These results indicated that efficient mobilization of MSCs to sites of tissue injury may be due to CXCR4, and therefore, increased expression of CXCR4 may improve their therapeutic potential in the treatment of diseases where tissue damage develops.


Journal of Ethnopharmacology | 2016

Neuroprotective effects of ginseng protein on PI3K/Akt signaling pathway in the hippocampus of D-galactose/AlCl3 inducing rats model of Alzheimer's disease.

Hongyan Li; Tingguo Kang; Bin Qi; Liang Kong; Yanan Jiao; Yang Cao; Jianghua Zhang; Jingxian Yang

ETHNOPHARMACOLOGICAL RELEVANCE Alzheimer disease (AD) is a progressive neurodegenerative disease, with progressive memory loss, cognitive deterioration, and behavioral disorders. Ginseng (Panax ginseng C.A. Meyer) is widely used in China to treat various kinds of nervous system disorders. The study aimed to explore the therapeutic effect of ginseng protein (GP) on Alzheimers disease and its correlation with the PI3K/Akt signaling pathway to understand the mechanism underlying the neuroprotective effect of ginseng. MATERIAL AND METHODS The AD rat model was established by intraperitoneally injecting D-galactose [60mg/(kgd)] followed by intragastrically administering AlCl3 [40mg/(kgd)] for 90 days. From day 60, the GP groups were intragastrically administered with GP 0.05 or 0.1g/kg twice daily for 30 days. The ethology of rats was tested by Morris water maze test. The content of Aβ1-42 and p-tau in the hippocampus of rats was detected by enzyme-linked immunosorbent assay. The expression of mRNAs and proteins of PI3K, Akt, phosphorylated Akt (p-Akt), Bcl-2, and Bax in the hippocampus was detected by real-time quantitative reverse transcription polymerase chain reaction and Western blot assay. RESULTS GP was found to significantly improve the memory ability of AD rats and prolong the times of crossing the platform and the percentage of residence time in the original platform quadrant of spatial probe test. GP also reduced the content of Aβ1-42 and p-tau and improved the mRNA and protein expression of PI3K, p-Akt/Akt, and Bcl-2/Bax in the hippocampus. CONCLUSIONS GP could improve the memory ability and reduce the content of Aβ1-42 and p-tau in AD rats. The anti-AD effects of GP were in part mediated by PI3K/Akt signaling pathway activation.


Neuropharmacology | 2016

Osthole decreases beta amyloid levels through up-regulation of miR-107 in Alzheimer's disease.

Yanan Jiao; Liang Kong; Yingjia Yao; Shaoheng Li; Zhenyu Tao; Yuhui Yan; Jingxian Yang

Accumulation of β-amyloid peptide (Aβ) in the brain plays an important role in the pathogenesis of Alzheimers disease (AD). Although osthole has been shown to neuroprotective activity in AD, the exact molecular mechanism of its neuroprotective effects has not yet been fully elucidated. Recently, microRNAs (miRNAs) have been reported to regulate multiple aspects of AD development and progression, indicating that targeting miRNAs could be a novel strategy to treat AD. In the current study, we investigated whether a natural coumarin derivative osthole could up-regulate miR-107, resulting in facilitating the cells survival, reducing LDH leakage, inhibiting apoptosis and reducing beta amyloid (Aβ) production in AD. We found that osthole treatment significantly up-regulate miR-107 expression and inhibited BACE1, one of the targets of miR-107. Administration of osthole to APP/PS1 transgenic mice resulted in a significant improvement in learning and memory function, which was associated with a significant a decrease in Aβ in the hippocampal and cortex region of the brain. Our findings demonstrated that osthole plays a neuroprotective activity role in part through up-regulate miR-107 in AD.


Toxicology and Applied Pharmacology | 2015

Osthole promotes neuronal differentiation and inhibits apoptosis via Wnt/β-catenin signaling in an Alzheimer's disease model.

Yingjia Yao; Zhong Gao; Wenbo Liang; Liang Kong; Yanan Jiao; Shaoheng Li; Zhenyu Tao; Yuhui Yan; Jingxian Yang

Neurogenesis is the process by which neural stem cells (NSCs) proliferate and differentiate into neurons. This is diminished in several neurodegenerative disorders such as Alzheimers disease (AD), which is characterized by the deposition of amyloid (A)β peptides and neuronal loss. Stimulating NSCs to replace lost neurons is therefore a promising approach for AD treatment. Our previous study demonstrated that osthole modulates NSC proliferation and differentiation, and may reduce Aβ protein expression in nerve cells. Here we investigated the mechanism underlying the effects of osthole on NSCs. We found that osthole enhances NSC proliferation and neuronal differentiation while suppressing apoptosis, effects that were exerted via activation of Wnt/β-catenin signaling. These results provide evidence that osthole can potentially be used as a therapeutic agent in the treatment of AD and other neurodegenerative disorders.


Biological & Pharmaceutical Bulletin | 2015

The Coumarin Derivative Osthole Stimulates Adult Neural Stem Cells, Promotes Neurogenesis in the Hippocampus, and Ameliorates Cognitive Impairment in APP/PS1 Transgenic Mice

Liang Kong; Yu Hu; Yingjia Yao; Yanan Jiao; Shaoheng Li; Jingxian Yang

It is believed that neuronal death caused by abnormal deposition of amyloid-beta peptide is the major cause of the cognitive decline in Alzheimers disease. Adult neurogenesis plays a key role in the rescue of impaired neurons and amelioration of cognitive impairment. In the present study, we demonstrated that osthole, a natural coumarin derivative, was capable of promoting neuronal stem cell (NSC) survival and inducing NSC proliferation in vitro. In osthole-treated APP/PS1 transgenic mice, a significant improvement in learning and memory function was seen, which was associated with a significant increase in the number of new neurons (Ki67(+)/NF-M(+)) and a decrease in apoptotic cells in the hippocampal region of the brain. These observations suggested that osthole promoted NSC proliferation, supported neurogenesis, and thus efficiently rescued impaired neurons in the hippocampus and ameliorated cognitive impairment. We also found that osthole treatment activated the Notch pathway and upregulated the expression of self-renewal genes Notch 1 and Hes 1 mRNA in NSCs. However, when Notch activity was blocked by the γ-secretase inhibitor DAPT, the augmentation of Notch 1 and Hes 1 protein was ameliorated, and the proliferation-inducing effect of osthole was abolished, suggesting that the effects of osthole are at least in part mediated by activation of the Notch pathway.


Life Sciences | 2016

Neurotrophin-3 promotes proliferation and cholinergic neuronal differentiation of bone marrow- derived neural stem cells via notch signaling pathway

Yuhui Yan; Shaoheng Li; Zhong Gao; Sa-feng Zou; Hongyan Li; Zhenyu Tao; Jie Song; Jingxian Yang

AIMS Recently, the potential for neural stem cells (NSCs) to be used in the treatment of Alzheimers disease (AD) has been reported; however, the therapeutic effects are modest by virtue of the low neural differentiation rate. In our study, we transfected bone marrow-derived NSCs (BM-NSCs) with Neurotrophin-3 (NT-3), a superactive neurotrophic factor that promotes neuronal survival, differentiation, and migration of neuronal cells, to investigate the effects of NT-3 gene overexpression on the proliferation and differentiation into cholinergic neuron of BM-NSCs in vitro and its possible molecular mechanism. MAIN METHODS BM-NSCs were generated from BM mesenchymal cells of adult C57BL/6 mice and cultured in vitro. After transfected with NT-3 gene, immunofluorescence and RT-PCR method were used to determine the ability of BM-NSCs on proliferation and differentiation into cholinergic neuron; Acetylcholine Assay Kit was used for acetylcholine (Ach). RT-PCR and WB analysis were used to characterize mRNA and protein level related to the Notch signaling pathway. KEY FINDINGS We found that NT-3 can promote the proliferation and differentiation of BM-NSCs into cholinergic neurons and elevate the levels of acetylcholine (ACh) in the supernatant. Furthermore, NT-3 gene overexpression increase the expression of Hes1, decreased the expression of Mash1 and Ngn1 during proliferation of BM-NSCs. Whereas, the expression of Hes1 was down-regulated, and Mash1 and Ngn1 expression were up-regulated during differentiation of BM-NSCs. SIGNIFICANCE Our findings support the prospect of using NT-3-transduced BM-NSCs in developing therapies for AD due to their equivalent therapeutic potential as subventricular zone-derived NSCs (SVZ-NSCs), greater accessibility, and autogenous attributes.


Frontiers in Pharmacology | 2016

Arctigenin Treatment Protects against Brain Damage through an Anti-Inflammatory and Anti-Apoptotic Mechanism after Needle Insertion

Jie Song; Na Li; Yang Xia; Zhong Gao; Sa-feng Zou; Liang Kong; Yingjia Yao; Yanan Jiao; Yuhui Yan; Shaoheng Li; Zhenyu Tao; Guan Lian; Jingxian Yang; Tingguo Kang

Convection enhanced delivery (CED) infuses drugs directly into brain tissue. Needle insertion is required and results in a stab wound injury (SWI). Subsequent secondary injury involves the release of inflammatory and apoptotic cytokines, which have dramatic consequences on the integrity of damaged tissue, leading to the evolution of a pericontusional-damaged area minutes to days after in the initial injury. The present study investigated the capacity for arctigenin (ARC) to prevent secondary brain injury and the determination of the underlying mechanism of action in a mouse model of SWI that mimics the process of CED. After CED, mice received a gavage of ARC from 30 min to 14 days. Neurological severity scores (NSS) and wound closure degree were assessed after the injury. Histological analysis and immunocytochemistry were used to evaluated the extent of brain damage and neuroinflammation. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was used to detect universal apoptosis. Enzyme-linked immunosorbent assays (ELISA) was used to test the inflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-10) and lactate dehydrogenase (LDH) content. Gene levels of inflammation (TNF-α, IL-6, and IL-10) and apoptosis (Caspase-3, Bax and Bcl-2) were detected by reverse transcription-polymerase chain reaction (RT-PCR). Using these, we analyzed ARC’s efficacy and mechanism of action. Results: ARC treatment improved neurological function by reducing brain water content and hematoma and accelerating wound closure relative to untreated mice. ARC treatment reduced the levels of TNF-α and IL-6 and the number of allograft inflammatory factor (IBA)- and myeloperoxidase (MPO)-positive cells and increased the levels of IL-10. ARC-treated mice had fewer TUNEL+ apoptotic neurons and activated caspase-3-positive neurons surrounding the lesion than controls, indicating increased neuronal survival. Conclusions: ARC treatment confers neuroprotection of brain tissue through anti-inflammatory and anti-apoptotic effects in a mouse model of SWI. These results suggest a new strategy for promoting neuronal survival and function after CED to improve long-term patient outcome.


Journal of Molecular Neuroscience | 2016

Neuroprotective Effect of Osthole on Neuron Synapses in an Alzheimer's Disease Cell Model via Upregulation of MicroRNA-9.

Shaoheng Li; Yuhui Yan; Yanan Jiao; Zhong Gao; Yang Xia; Liang Kong; Yingjia Yao; Zhenyu Tao; Jie Song; Yaping Yan; Guang-Xian Zhang; Jingxian Yang

Accumulation of β-amyloid peptide (Aβ) in the brain plays an important role in the pathogenesis of Alzheimer’s disease (AD). It has been reported that osthole exerts its neuroprotective effect on neuronal synapses, but its exact mechanism is obscure. Recently, microRNAs have been demonstrated to play a crucial role in inducing synaptotoxicity by Aβ, implying that targeting microRNAs could be a therapeutic approach of AD. In the present study, we investigated the neuroprotective effects of osthole on a cell model of AD by transducing APP695 Swedish mutant (APP695swe, APP) into mouse cortical neurons and human SH-SY5Y cells. In this study, the cell counting kit CCK-8, apoptosis assay, immunofluorescence analysis, enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction, and Western blot assay were used. We found that osthole could enhance cell viability, prevent cell death, and reverse the reduction of synaptic proteins (synapsin-1, synaptophysin, and postsynaptic density-95) in APP-overexpressed cells, which was attributed to increases in microRNA-9 (miR-9) expression and subsequent decreases in CAMKK2 and p-AMPKα expressions. These results demonstrated that osthole plays a neuroprotective activity role in part through upregulating miR-9 in AD.


Molecular Medicine Reports | 2015

Salvianolic acid B improves bone marrow-derived mesenchymal stem cell differentiation into alveolar epithelial cells type I via Wnt signaling

Peng Gao; Jingxian Yang; Xi Gao; Dan Xu; Dongge Niu; Jinglin Li; Qingping Wen

Acute lung injury (ALI) is among the most common causes of mortality in intensive care units. Previous studies have suggested that bone marrow-derived mesenchymal stem cells (BMSCs) may attenuate pulmonary edema. In addition, alveolar epithelial cells type I (ATI) are involved in reducing the alveolar edema in response to ALI. However, the mechanism involved in improving the efficiency of differentiation of MSCs into ATI remains to be elucidated. In the present study, the effect of salvianolic acid B (Sal B) on the differentiation of BMSCs into ATI and the activities of the Wnt signaling pathways were investigated. The BMSCs were supplemented with conditioned medium (CM). The groups were as follows: i) CM group: BMSCs were supplemented with CM; ii) lithium chloride (LiCl) group: BMSCs were supplemented with CM and 5 mM LiCl; iii) Sal B group: BMSCs were supplemented with CM and 10 mM Sal B. The samples were collected and assessed on days 7 and 14. It was revealed that aquaporin (AQP)-5 and T1α were expressed in BMSCs, and induction with LiCl or Sal B increased the expression of AQP-5 and T1α. Furthermore, the Wnt-1 and Wnt-3a signaling pathways were activated during the differentiation of BMSCs into ATI. In conclusion, it was suggested that the promotive effects of Sal B on the differentiation of BMSCs into ATI occurred through the activation of Wnt signaling pathways.


Journal of Molecular Neuroscience | 2016

Arctigenin Confers Neuroprotection Against Mechanical Trauma Injury in Human Neuroblastoma SH-SY5Y Cells by Regulating miRNA-16 and miRNA-199a Expression to Alleviate Inflammation

Jie Song; Na Li; Yang Xia; Zhong Gao; Sa-feng Zou; Yuhui Yan; Shaoheng Li; Yue Wang; Ya-Kun Meng; Jingxian Yang; Tingguo Kang

Mechanical trauma injury is a severe insult to neural cells. Subsequent secondary injury involves the release of inflammatory factors that have dramatic consequences for undamaged cells, leading to normal cell death after the initial injury. The present study investigated the capacity for arctigenin (ARC) to prevent secondary effects and evaluated the mechanism underlying the action of microRNA (miRNA)-199a and miRNA-16 in a mechanical trauma injury (MTI) model using SH-SY5Y cells in vitro. SH-SY5Y cells are often applied to in vitro models of neuronal function and differentiation. Recently, miRNAs have been demonstrated to play a crucial role in NF-κB and cholinergic signaling, which can regulate inflammation. The cell model was established by scratch-induced injury of human SH-SY5Y cells, which mimics the characteristics of MTI. A cell counting kit-8 (CCK-8), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and immunocytochemistry were used to measure cell viability. Enzyme-linked immunosorbent assay (ELISA) was used to evaluate the inflammatory cytokine and cholinesterase (CHE) content. The lactate dehydrogenase (LDH) content was measured to assess the degree of cell injury. The mRNA levels were measured by RT-PCR to analyze ARC’s mechanism of action. miRNA inhibitors and mimics were used to inhibit and strengthen the expression of miRNAs. Protein expression was detected by western blotting analysis. ARC treatment reduced the TNF-α and IL-6 levels as well as the number of TUNEL+ apoptotic SH-SY5Y cells surrounding the scratch and increased the IL-10 level compared to the controls. ARC attenuated the increase of the cell damage degree and LDH content induced by scratching, indicating increased cell survival. Mechanistic studies showed that ARC upregulated the miRNA-16 and miRNA-199a levels to reduce upstream protein (IKKα and IKKβ) expression and inhibit NF-κB signaling pathway activity; moreover, the increased miRNA-199a suppresses cholinesterases to increase cholinergic signaling, resulting in decreased expression of proinflammatory cytokines. ARC treatment confers protection for SH-SY5Y cells through positive regulation of miRNA expression, thereby reducing the inflammatory response. In turn, these effects accelerate injury repair in the scratch-induced injury model. These results might provide insights into the pharmacological role of ARC in anti-inflammation and neuroprotection in neural cells.

Collaboration


Dive into the Jingxian Yang's collaboration.

Top Co-Authors

Avatar

Yuhui Yan

Liaoning University of Traditional Chinese Medicine

View shared research outputs
Top Co-Authors

Avatar

Shaoheng Li

Liaoning University of Traditional Chinese Medicine

View shared research outputs
Top Co-Authors

Avatar

Jie Song

Liaoning University of Traditional Chinese Medicine

View shared research outputs
Top Co-Authors

Avatar

Liang Kong

Liaoning University of Traditional Chinese Medicine

View shared research outputs
Top Co-Authors

Avatar

Yanan Jiao

Liaoning University of Traditional Chinese Medicine

View shared research outputs
Top Co-Authors

Avatar

Yingjia Yao

Liaoning University of Traditional Chinese Medicine

View shared research outputs
Top Co-Authors

Avatar

Zhenyu Tao

Liaoning University of Traditional Chinese Medicine

View shared research outputs
Top Co-Authors

Avatar

Hongyan Li

Liaoning University of Traditional Chinese Medicine

View shared research outputs
Top Co-Authors

Avatar

Yang Xia

University of Oxford

View shared research outputs
Top Co-Authors

Avatar

Tingguo Kang

Liaoning University of Traditional Chinese Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge