Jingxiang Low
Wuhan University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jingxiang Low.
Advanced Materials | 2015
Shaowen Cao; Jingxiang Low; Jiaguo Yu; Mietek Jaroniec
Semiconductor-based photocatalysis is considered to be an attractive way for solving the worldwide energy shortage and environmental pollution issues. Since the pioneering work in 2009 on graphitic carbon nitride (g-C3N4) for visible-light photocatalytic water splitting, g-C3N4 -based photocatalysis has become a very hot research topic. This review summarizes the recent progress regarding the design and preparation of g-C3N4 -based photocatalysts, including the fabrication and nanostructure design of pristine g-C3N4 , bandgap engineering through atomic-level doping and molecular-level modification, and the preparation of g-C3N4 -based semiconductor composites. Also, the photo-catalytic applications of g-C3N4 -based photocatalysts in the fields of water splitting, CO2 reduction, pollutant degradation, organic syntheses, and bacterial disinfection are reviewed, with emphasis on photocatalysis promoted by carbon materials, non-noble-metal cocatalysts, and Z-scheme heterojunctions. Finally, the concluding remarks are presented and some perspectives regarding the future development of g-C3N4 -based photocatalysts are highlighted.
Journal of Materials Chemistry | 2015
Xin Li; Jiaguo Yu; Jingxiang Low; Yueping Fang; Jing Xiao; Xiaobo Chen
There is a growing interest in the conversion of water and solar energy into clean and renewable H2 fuels using earth-abundant materials due to the depletion of fossil fuel and its serious environmental impact. This critical review highlights some key factors influencing the efficiency of heterogeneous semiconductors for solar water splitting (i.e. improved charge separation and transfer, promoted optical absorption, optimized band gap position, lowered cost and toxicity, and enhanced stability and water splitting kinetics). Moreover, different engineering strategies, such as band structure engineering, micro/nano engineering, bionic engineering, co-catalyst engineering, surface/interface engineering of heterogeneous semiconductors are summarized and discussed thoroughly. The synergistic effects of the different engineering strategies, especially for the combination of co-catalyst loading and other strategies seem to be more promising for the development of highly efficient photocatalysts. A thorough understanding of electron and hole transfer thermodynamics and kinetics at the fundamental level is also important for elucidating the key efficiency-limiting step and designing highly efficient solar-to-fuel conversion systems. In this review, we provide not only a summary of the recent progress in the different engineering strategies of heterogeneous semiconductors for solar water splitting, but also some potential opportunities for designing and optimizing solar cells, photocatalysts for the reduction of CO2 and pollutant degradation, and electrocatalysts for water splitting.
Science China. Materials | 2014
Xin Li; Jiuqing Wen; Jingxiang Low; Yueping Fang; Jiaguo Yu
The shortage of fossil fuels and the disastrous pollution of the environment have led to an increasing interest in artificial photosynthesis. The photocatalytic conversion of CO2 into solar fuel is believed to be one of the best methods to overcome both the energy crisis and environmental problems. It is of significant importance to efficiently manage the surface reactions and the photo-generated charge carriers to maximize the activity and selectivity of semiconductor photocatalysts for photoconversion of CO2 and H2O to solar fuel. To date, a variety of strategies have been developed to boost their photocatalytic activity and selectivity for CO2 photoreduction. Based on the analysis of limited factors in improving the photocatalytic efficiency and selectivity, this review attempts to summarize these strategies and their corresponding design principles, including increased visible-light excitation, promoted charge transfer and separation, enhanced adsorption and activation of CO2, accelerated CO2 reduction kinetics and suppressed undesirable reaction. Furthermore, we not only provide a summary of the recent progress in the rational design and fabrication of highly active and selective photocatalysts for the photoreduction of CO2, but also offer some fundamental insights into designing highly efficient photocatalysts for water splitting or pollutant degradation.摘要近年来, 严 重的化石燃料短缺以及环境污染问题使得人工光合作用引起了科研工作者的广泛关注, 光催化转换CO2成为有价值的太阳能燃料被认为是解决能源危机以及环境问题的最好的方法之一. 有效地控制半导体表面的催化反应以及光生载流子是制备高活性以及高选择性半导体CO2还原光催化剂的关键因素, 至今, 研究人员已经提出了许多策略来增强光催化转换CO2的活性以及选择性. 本文在分析提高光催化效率和选择性限制因素的基础上, 尝试从几个不同方面总结了近些年来提高光催化CO2还原效率的方法以及它们的设计原理, 包括增强半导体可见光响应、 促进光生电子空穴分离、 提高CO2的吸附和活化、 加速CO2还原的动力学以及抑制不良反应等方面. 因此, 本文不仅系统地总结了近年来高活性高选择性光催化CO2还原光催化剂的设计进展, 而且为高效光解水产氢和污染物降解光催化剂的设计提供了重要参考.
Journal of Physical Chemistry Letters | 2015
Jingxiang Low; Jiaguo Yu; Wingkei Ho
Recently, photocatalytic CO2 reduction for solar fuel production has attracted much attention because of its potential for simultaneously solving energy and global warming problems. Many studies have been conducted to prepare novel and efficient photocatalysts for CO2 reduction. Graphene, a two-dimensional material, has been increasingly used in photocatalytic CO2 reduction. In theory, graphene shows several remarkable properties, including excellent electronic conductivity, good optical transmittance, large specific surface area, and superior chemical stability. Attributing to these advantages, fabrication of graphene-based materials has been known as one of the most feasible strategies to improve the CO2 reduction performance of photocatalysts. This Perspective mainly focuses on the recent important advances in the fabrication and application of graphene-based photocatalysts for CO2 reduction to solar fuels. The existing challenges and difficulties of graphene-based photocatalysts are also discussed for future application.
Chinese Journal of Catalysis | 2015
Maxwell Selase Akple; Jingxiang Low; Zhiyang Qin; S. Wageh; Ahmed A. Al-Ghamdi; Jiaguo Yu; Shengwei Liu
Abstract Nitrogen-doped anatase TiO2 microsheets with 65% (001) and 35% (101) exposed faces were fabricated by the hydrothermal method using TiN as precursor in the presence of HF and HCl. The samples were characterized by scanning electron microscopy, X-ray diffraction, N2 adsorption, X-ray photoelectron spectroscopy, UV-visible spectroscopy, and electrochemical impedance spectroscopy. Their photocatalytic activity was evaluated using the photocatalytic reduction of CO2. The N-doped TiO2 sample exhibited a much higher visible light photocatalytic activity for CO2 reduction than its precursor TiN and commercial TiO2 (P25). This was due to the synergistic effect of the formation of surface heterojunctions on the TiO2 microsheet surface, enhanced visible light absorption by nitrogen-doping, and surface fluorination.
Dalton Transactions | 2014
Junwei Fu; Shaowen Cao; Jiaguo Yu; Jingxiang Low; Yongpeng Lei
Photocatalytic reduction of CO2 into renewable hydrocarbon fuels using semiconductor photocatalysts is considered as a potential solution to the energy deficiency and greenhouse effect. In this work, mesoporous TiO2 nanofibers with high specific surface areas and abundant surface hydroxyl groups are prepared using an electrospinning strategy combined with a subsequent calcination process, followed by a solvothermal treatment. The solvothermally treated mesoporous TiO2 nanofibers exhibit excellent photocatalytic performance on CO2 reduction into hydrocarbon fuels. The significantly improved photocatalytic activity can be attributed to the enhanced CO2 adsorption capacity and the improved charge separation after solvothermal treatment. The highest activity is achieved for the sample with a 2-h solvothermal treatment, showing 6- and 25-fold higher CH4 production rate than those of TiO2 nanofibers without solvothermal treatment and P25, respectively. This work may also provide a prototype for studying the effect of solvothermal treatment on the structure and photocatalytic activity of semiconductor photocatalysts.
ACS Applied Materials & Interfaces | 2014
Zhihua Xu; Jiaguo Yu; Jingxiang Low; Mietek Jaroniec
Mesoporous aluminum oxyhydroxides composed of nanoflakes were prepared via a water-in-oil microemulsion-assisted hydrothermal process at 50 °C using aluminum salts as precursors and ammonium hydroxide as a precipitating agent. The microstructure, morphology, and textural properties of the as-prepared materials were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), nitrogen adsorption, and X-ray photoelectron spectroscopy (XPS) techniques. It is shown that the aluminum oxyhydroxide nanostructures studied are effective adsorbents for removal of formaldehyde (HCHO) at ambient temperature, due to the abundance of surface hydroxyl groups, large specific surface area, and suitable pore size. Also, the type of aluminum precursor was essential for the microstructure formation and adsorption performance of the resulting materials. Namely, the sample prepared from aluminum sulfate (Al-s) exhibited a relatively high HCHO adsorption capacity in the first run, while the samples obtained from aluminum nitrate (Al-n) and chloride (Al-c) exhibited high adsorption capacity and relatively stable recyclability. A combination of high surface area and strong surface affinity of the prepared aluminum oxyhydroxide make this material a promising HCHO adsorbent for indoor air purification.
Archive | 2016
Xin Li; Jingxiang Low; Jiaguo Yu
The depletion of fossil fuel and serious climate and environmental problems associated with their combustion have led to increasing interest in the photocatalytic H2 generation from water splitting by using earth-abundant SCs and solar energy because the photocatalytic H2 production, as a promising strategy, could solve both solar energy store and green production of hydrogen fuel. This chapter summarizes the fundamentals and many important achievements in photocatalytic hydrogen production over heterogeneous photocatalysts from the highly efficient photocatalyst design point of view. The focus will be on various improving methods and key design parameters for photocatalytic H2 evolution to enhance the overall efficiency, including promoted charge separation and transport, accelerated H2-evolution kinetics and increased stability of photocatalysts. This chapter may open some potential opportunities for designing and understanding highly effective photocatalytic systems for H2- and O2-evolution half reactions as well as overall water splitting.
Advanced Materials | 2018
Jingxiang Low; Benzhe Dai; Tong Tong; Chuanjia Jiang; Jiaguo Yu
Inspired by nature, artificial photosynthesis through the construction of direct Z-scheme photocatalysts is extensively studied for sustainable solar fuel production due to the effectiveness in enhancing photoconversion efficiency. However, there is still a lack of thorough understanding and direct evidence for the direct Z-scheme charge transfer in these photocatalysts. Herein, a recyclable direct Z-scheme composite film composed of titanium dioxide and cadmium sulfide (TiO2 /CdS) is prepared for high-efficiency photocatalytic carbon dioxide (CO2 ) reduction. In situ irradiated X-ray photoelectron spectroscopy (ISI-XPS) confirms the direct Z-scheme charge-carrier migration pathway in the photocatalytic system. Furthermore, density functional theory simulation identifies the intrinsic cause for the formation of the direct Z-scheme heterojunction between the TiO2 and the CdS. Thanks to the significantly enhanced redox abilities of the charge carriers in the direct Z-scheme system, the photocatalytic CO2 reduction performance of the optimized TiO2 /CdS is 3.5, 5.4, and 6.3 times higher than that of CdS, TiO2 , and commercial TiO2 (P25), respectively, in terms of methane production. This work is a valuable guideline in preparation of highly efficient recyclable nanocomposite for photoconversion applications.
Journal of the American Chemical Society | 2014
Jiaguo Yu; Jingxiang Low; Wei Xiao; Peng Zhou; Mietek Jaroniec