Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jingxue Yu is active.

Publication


Featured researches published by Jingxue Yu.


Journal of Biological Chemistry | 2009

Lactate Inhibits Lipolysis in Fat Cells through Activation of an Orphan G-protein-coupled Receptor, GPR81

Changlu Liu; Jiejun Wu; Jessica Zhu; Chester Kuei; Jingxue Yu; Jonathan Shelton; Steven W. Sutton; Xiaorong Li; Su Jin Yun; Taraneh Mirzadegan; Curt Mazur; Fredrik Kamme; Timothy W. Lovenberg

Lactic acid is a well known metabolic by-product of intense exercise, particularly under anaerobic conditions. Lactate is also a key source of energy and an important metabolic substrate, and it has also been hypothesized to be a signaling molecule directing metabolic activity. Here we show that GPR81, an orphan G-protein-coupled receptor highly expressed in fat, is in fact a sensor for lactate. Lactate activates GPR81 in its physiological concentration range of 1–20 mm and suppresses lipolysis in mouse, rat, and human adipocytes as well as in differentiated 3T3-L1 cells. Adipocytes from GPR81-deficient mice lack an antilipolytic response to lactate but are responsive to other antilipolytic agents. Lactate specifically induces internalization of GPR81 after receptor activation. Site-directed mutagenesis of GPR81 coupled with homology modeling demonstrates that classically conserved key residues in the transmembrane binding domains are responsible for interacting with lactate. Our results indicate that lactate suppresses lipolysis in adipose tissue through a direct activation of GPR81. GPR81 may thus be an attractive target for the treatment of dyslipidemia and other metabolic disorders.


Nature | 2011

Oxysterols direct B-cell migration through EBI2.

Changlu Liu; Xia V. Yang; Jiejun Wu; Chester Kuei; Neelakandha S. Mani; Li Zhang; Jingxue Yu; Steven W. Sutton; Ning Qin; Homayon Banie; Lars Karlsson; Siquan Sun; Timothy W. Lovenberg

EBI2 (also called GPR183) is an orphan G-protein-coupled receptor that is highly expressed in spleen and upregulated upon Epstein–Barr-virus infection. Recent studies indicated that this receptor controls follicular B-cell migration and T-cell-dependent antibody production. Oxysterols elicit profound effects on immune and inflammatory responses as well as on cholesterol metabolism. The biological effects of oxysterols have largely been credited to the activation of nuclear hormone receptors. Here we isolate oxysterols from porcine spleen extracts and show that they are endogenous ligands for EBI2. The most potent ligand and activator is 7α,25-dihydroxycholesterol (OHC), with a dissociation constant of 450 pM for EBI2. In vitro, 7α,25-OHC stimulated the migration of EBI2-expressing mouse B and T cells with half-maximum effective concentration values around 500 pM, but had no effect on EBI2-deficient cells. In vivo, EBI2-deficient B cells or normal B cells desensitized by 7α,25-OHC pre-treatment showed reduced homing to follicular areas of the spleen. Blocking the synthesis of 7α,25-OHC in vivo with clotrimazole, a CYP7B1 inhibitor, reduced the content of 7α,25-OHC in the mouse spleen and promoted the migration of adoptively transferred pre-activated B cells to the T/B boundary (the boundary between the T-zone and B-zone in the spleen follicle), mimicking the phenotype of pre-activated B cells from EBI2-deficient mice. Our results show an unexpected causal link between EBI2, an orphan G-protein-coupled receptor controlling B-cell migration, and the known immunological effects of certain oxysterols, thus uncovering a previously unknown role for this class of molecules.


Journal of Pharmacology and Experimental Therapeutics | 2012

3,5-Dihydroxybenzoic Acid, a Specific Agonist for Hydroxycarboxylic Acid 1, Inhibits Lipolysis in Adipocytes

Changlu Liu; Chester Kuei; Jessica Zhu; Jingxue Yu; Li I. Zhang; Amy Y. Shih; Taraneh Mirzadegan; Jonathan Shelton; Steven W. Sutton; Margery A. Connelly; Grace Lee; Nicholas I. Carruthers; Jiejun Wu; Timothy W. Lovenberg

Niacin raises high-density lipoprotein and lowers low-density lipoprotein through the activation of the β-hydroxybutyrate receptor hydroxycarboxylic acid 2 (HCA2) (aka GPR109a) but with an unwanted side effect of cutaneous flushing caused by vascular dilation because of the stimulation of HCA2 receptors in Langerhans cells in skin. HCA1 (aka GPR81), predominantly expressed in adipocytes, was recently identified as a receptor for lactate. Activation of HCA1 in adipocytes by lactate results in the inhibition of lipolysis, suggesting that agonists for HCA1 may be useful for the treatment of dyslipidemia. Lactate is a metabolite of glucose, suggesting that HCA1 may also be involved in the regulation of glucose metabolism. The low potency of lactate to activate HCA1, coupled with its fast turnover rate in vivo, render it an inadequate tool for studying the biological role of lactate/HCA1 in vivo. In this article, we demonstrate the identification of 3-hydroxybenzoic acid (3-HBA) as an agonist for both HCA2 and HCA1, whereas 3,5-dihydroxybenzoic acid (3,5-DHBA) is a specific agonist for only HCA1 (EC50 ∼150 μM). 3,5-DHBA inhibits lipolysis in wild-type mouse adipocytes but not in HCA1-deficient adipocytes. Therefore, 3,5-DHBA is a useful tool for the in vivo study of HCA1 function and offers a base for further HCA1 agonist design. Because 3-HBA and 3,5-DHBA are polyphenolic acids found in many natural products, such as fruits, berries, and coffee, it is intriguing to speculate that other heretofore undiscovered natural substances may have therapeutic benefits.


Molecular Pharmacology | 2011

Study of GPR81, the lactate receptor, from distant species identifies residues and motifs critical for GPR81 functions.

Chester Kuei; Jingxue Yu; Jessica Zhu; Jiejun Wu; Li I. Zhang; Amy Y. Shih; Taraneh Mirzadegan; Timothy W. Lovenberg; Changlu Liu

Receptors from distant species may have conserved functions despite significant differences in protein sequences. Whereas the noncritical residues are often changed in distant species, the amino acids critical in receptor functions are often conserved. Studying the conserved residues between receptors from distant species offers valuable information to probe the roles of residues in receptor function. We identified two zebrafish receptors (zGPR81-1 and zGPR81-2) that show approximately 60% identity to human GPR81, GPR109a, and GPR109b but respond only to l-lactate and not to the GPR109a ligands. Protein sequence comparison among zebrafish GPR81s, mammalian GPR81s, GPR109a, and GPR109b identified a common structure (six Cys residues at the extracellular domains that potentially form three disulfide bonds) in this subfamily of receptors. In addition, a number of residues conserved in all GPR81s but not in GPR109s have been identified. Furthermore, we identified a conserved motif, C165-E166-S167-F168, at the second extracellular loop of GPR81. Using site-directed mutagenesis, we showed that Arg71 at the transmembrane domain 2 is very critical for GPR81 function. In addition, we demonstrated that the C165-E166-S167-F168 motif at the second extracellular loop is critical for GPR81 function, and the conserved six Cys residues at the extracellular regions are necessary for GPR81 function. It is important to mention that for those residues important for GPR81 function, the corresponding residues or motifs in GPR109a are also critical for GPR109a function. These findings help us better understand the interaction between lactate and GPR81 and provide useful information for GPR81 ligand design.


European Journal of Pharmacology | 2008

Identification of the domains in RXFP4 (GPCR142) responsible for the high affinity binding and agonistic activity of INSL5 at RXFP4 compared to RXFP3 (GPCR135)

Jessica Zhu; Chester Kuei; Steven W. Sutton; Fredrik Kamme; Jingxue Yu; Pascal Bonaventure; John R. Atack; Timothy W. Lovenberg; Changlu Liu

Relaxin-3 is a potent agonist for both G-protein coupled receptors (GPCR) RXFP3 (also known as GPCR135) and RXFP4 (also known as GPCR142) while insulin-like peptides 5 (INSL5) is a selective RXFP4 agonist. INSL5 is also a weak (low affinity) RXFP3 antagonist. RXFP3 and RXFP4 share about 50% homology. We have used gain-of-function (RXFP3 --> RXFP4) and loss-of-function (RXFP4 --> RXFP3) chimeras to identify the domains critical for the binding and activation induced by INSL5. Replacing extracellular loop (EL) 1 or EL3 of RXFP3 with the corresponding domains from RXFP4 does not change the RXFP3 pharmacological profile. Exchanging the N-terminus and EL2 of RXFP3 with these of RXFP4 results in a chimeric receptor (CR5) with a high affinity for INSL5. However, in contrast to native RXFP4, INSL5 does not elicit an agonist response from CR5. Conversely, replacing the N-terminus and EL2 of RXFP4 with counterparts from RXFP3 (CR15) results in a chimeric receptor for which relaxin-3 and INSL5 are high and low affinity agonists, respectively. Further mutagenesis studies indicate that transmembrane (TM) domains 2, 3 and 5 of RXFP4 are critical determinants of functional receptor activation by INSL5. Replacement of TM2, 3, and 5 of RXFP3 with equivalent domains from RXFP4 results in a chimeric receptor that can be activated by INSL5. These results suggest that the N-terminus and EL2 domains of RXFP3 and RXFP4 are involved in ligand binding while TM2, 3, and 5 are critical for receptor activation.


Scientific Reports | 2016

Pharmacologic modulation of RORγt translates to efficacy in preclinical and translational models of psoriasis and inflammatory arthritis

Xiaohua Xue; Pejman Soroosh; Aimee De Leon-Tabaldo; Rosa Luna-Roman; Marciano Sablad; Natasha Rozenkrants; Jingxue Yu; Glenda Castro; Homayon Banie; Wai-Ping Fung-Leung; Luis Santamaria-Babi; Thomas Schlueter; Michael Albers; Kristi A. Leonard; Alison L. Budelsky; Anne M. Fourie

The IL-23/IL-17 pathway is implicated in autoimmune diseases, particularly psoriasis, where biologics targeting IL-23 and IL-17 have shown significant clinical efficacy. Retinoid-related orphan nuclear receptor gamma t (RORγt) is required for Th17 differentiation and IL-17 production in adaptive and innate immune cells. We identified JNJ-54271074, a potent and highly-selective RORγt inverse agonist, which dose-dependently inhibited RORγt-driven transcription, decreased co-activator binding and promoted interaction with co-repressor protein. This compound selectively blocked Th17 differentiation, significantly reduced IL-17A production from memory T cells, and decreased IL-17A- and IL-22-producing human and murine γδ and NKT cells. In a murine collagen-induced arthritis model, JNJ-54271074 dose-dependently suppressed joint inflammation. Furthermore, JNJ-54271074 suppressed IL-17A production in human PBMC from rheumatoid arthritis patients. RORγt-deficient mice showed decreased IL-23-induced psoriasis-like skin inflammation and cytokine gene expression, consistent with dose-dependent inhibition in wild-type mice through oral dosing of JNJ-54271074. In a translational model of human psoriatic epidermal cells and skin-homing T cells, JNJ-54271074 selectively inhibited streptococcus extract-induced IL-17A and IL-17F. JNJ-54271074 is thus a potent, selective RORγt modulator with therapeutic potential in IL-23/IL-17 mediated autoimmune diseases.


European Journal of Pharmacology | 2010

Mutagenesis studies of neuropeptide S identify a suitable peptide tracer for neuropeptide S receptor binding studies and peptides selectively activating the I107 variant of human neuropeptide S receptor

Diane Nepomuceno; Steve W. Sutton; Jingxue Yu; Jessica Zhu; Changlu Liu; Timothy W. Lovenberg; Pascal Bonaventure

Neuropeptide S and its receptor represent a novel neurotransmitter system mainly expressed in the brain. A single nucleotide polymorphism in the first extracellular loop (I107) increases the potency of neuropeptide S and has been identified for both the human neuropeptide S receptor short (A) and long (B) C-terminal forms. Preliminary human genetic studies link this polymorphism to asthma, panic disorders and altered sleep behavior. No polymorphism or splice variants have been reported for the rat neuropeptide S receptor, however it carries an isoleucine at position 107. To identify a suitable tracer for neuropeptide S receptor binding and investigate the role of specific amino acids within neuropeptide S we carried out mutagenesis of the peptide and assessed the ability of the mutations to stimulate calcium release in HEK293 cells expressing human neuropeptide S receptor variants (A, B, AI(107), BI(107)) and rat neuropeptide S receptor. Replacement of threonine at position 8 by arginine and methionine at position 10 by tyrosine resulted in a mutant peptide slightly more potent on all neuropeptide S receptor variants compared to neuropeptide S and more importantly the iodinated mutant peptide was found to be a suitable tracer for binding studies with improved signal to noise ratio and stability compared to [(125)I-Y(10)] neuropeptide S. Replacement of serine at position 1 of neuropeptide S peptide by arginine resulted in a complete loss of potency for the neuropeptide S receptor (long and short form) but not for the I(107) receptor variants (long and short) or rat neuropeptide S receptor.


PLOS ONE | 2017

RORγt and RORα signature genes in human Th17 cells

Glenda Castro; Xuejun Liu; Karen Ngo; Aimee De Leon-Tabaldo; Shanrong Zhao; Rosa Luna-Roman; Jingxue Yu; Tinghua Cao; Robert Kuhn; Patrick Wilkinson; Krystal Herman; Marina I. Nelen; Jonathan M. Blevitt; Xiaohua Xue; Anne M. Fourie; Wai-Ping Fung-Leung; Yeonseok Chung

RORγt and RORα are transcription factors of the RAR-related orphan nuclear receptor (ROR) family. They are expressed in Th17 cells and have been suggested to play a role in Th17 differentiation. Although RORγt signature genes have been characterized in mouse Th17 cells, detailed information on its transcriptional control in human Th17 cells is limited and even less is known about RORα signature genes which have not been reported in either human or mouse T cells. In this study, global gene expression of human CD4 T cells activated under Th17 skewing conditions was profiled by RNA sequencing. RORγt and RORα signature genes were identified in these Th17 cells treated with specific siRNAs to knock down RORγt or RORα expression. We have generated selective small molecule RORγt modulators and they were also utilized as pharmacological tools in RORγt signature gene identification. Our results showed that RORγt controlled the expression of a very selective number of genes in Th17 cells and most of them were regulated by RORα as well albeit a weaker influence. Key Th17 genes including IL-17A, IL-17F, IL-23R, CCL20 and CCR6 were shown to be regulated by both RORγt and RORα. Our results demonstrated an overlapping role of RORγt and RORα in human Th17 cell differentiation through regulation of a defined common set of Th17 genes. RORγt as a drug target for treatment of Th17 mediated autoimmune diseases such as psoriasis has been demonstrated recently in clinical trials. Our results suggest that RORα could be involved in same disease mechanisms and gene signatures identified in this report could be valuable biomarkers for tracking the pharmacodynamic effects of compounds that modulate RORγt or RORα activities in patients.


The Journal of Neuroscience | 2003

Single-Cell Microarray Analysis in Hippocampus CA1: Demonstration and Validation of Cellular Heterogeneity

Fredrik Kamme; Ranelle Salunga; Jingxue Yu; Da-Thao Tran; Jessica Zhu; Lin Luo; Anton Bittner; Hong-Qing Guo; Nancy E. Miller; Jackson Wan; Mark G. Erlander


Molecular Pharmacology | 2005

Identification and Pharmacological Characterization of Prokineticin 2β as a Selective Ligand for Prokineticin Receptor 1

Jingcai Chen; Chester Kuei; Steven W. Sutton; Sandy J. Wilson; Jingxue Yu; Fredrik Kamme; Curt Mazur; Timothy W. Lovenberg; Changlu Liu

Collaboration


Dive into the Jingxue Yu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven W. Sutton

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Glenda Castro

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Li I. Zhang

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge