Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jingyan Han is active.

Publication


Featured researches published by Jingyan Han.


ACS Nano | 2012

Acute and Chronic Shear Stress Differently Regulate Endothelial Internalization of Nanocarriers Targeted to Platelet-Endothelial Cell Adhesion Molecule-1

Jingyan Han; Blaine J. Zern; Vladimir V. Shuvaev; Peter F. Davies; Silvia Muro; Vladimir R. Muzykantov

Intracellular delivery of nanocarriers (NC) is controlled by their design and target cell phenotype, microenvironment, and functional status. Endothelial cells (EC) lining the vascular lumen represent an important target for drug delivery. Endothelium in vivo is constantly or intermittently (as, for example, during ischemia-reperfusion) exposed to blood flow, which influences NC-EC interactions by changing NC transport properties, and by direct mechanical effects upon EC mechanisms involved in NC binding and uptake. EC do not internalize antibodies to marker glycoprotein PECAM(CD31), yet internalize multivalent NC coated with PECAM antibodies (anti-PECAM/NC) via a noncanonical endocytic pathway distantly related to macropinocytosis. Here we studied the effects of flow on EC uptake of anti-PECAM/NC spheres (~180 nm diameter). EC adaptation to chronic flow, manifested by cellular alignment with flow direction and formation of actin stress fibers, inhibited anti-PECAM/NC endocytosis consistent with lower rates of anti-PECAM/NC endocytosis in vivo in arterial compared to capillary vessels. Acute induction of actin stress fibers by thrombin also inhibited anti-PECAM/NC endocytosis, demonstrating that formation of actin stress fibers impedes EC endocytic machinery. In contrast, acute flow without stress fiber formation, stimulated anti-PECAM/NC endocytosis. Anti-PECAM/NC endocytosis did not correlate with the number of cell-bound particles under flow or static conditions. PECAM cytosolic tail deletion and disruption of cholesterol-rich plasmalemma domains abrogated anti-PECAM/NC endocytosis stimulation by acute flow, suggesting complex regulation of a flow-sensitive endocytic pathway in EC. The studies demonstrate the importance of the local flow microenvironment for NC uptake by the endothelium and suggest that cell culture models of nanoparticle uptake should reflect the microenvironment and phenotype of the target cells.


The FASEB Journal | 2011

PECAM-targeted delivery of SOD inhibits endothelial inflammatory response

Vladimir V. Shuvaev; Jingyan Han; Kevin Yu; Shaohui Huang; Brian J. Hawkins; Muniswamy Madesh; Marian T. Nakada; Vladimir R. Muzykantov

Elevated generation of reactive oxygen species (ROS) by endothelial enzymes, including NADPH‐oxidase, is implicated in vascular oxidative stress and endothelial proinflammatory activation involving exposure of vascular cell adhesion molecule‐1 (VCAM‐1). Catalase and superoxide dismutase (SOD) conjugated with antibodies to platelet/endothelial cell adhesion molecule 1 (PECAM‐1) bind specifically to endothelium and inhibit effects of corresponding ROS, H2O2, and superoxide anion. In this study, anti‐PECAM/SOD, but not anti‐PECAM/catalase or nontargeted enzymes, including polyethylene glycol (PEG)‐SOD, inhibited 2‐ to 3‐fold VCAM expression caused by tumor necrosis factor (TNF), interleukin‐1β, and lipopolysaccharide. Anti‐PECAM/SOD, but not nontargeted counterparts, accumulated in vascular endothelium after intravenous injection, localized in endothelial endosomes, and inhibited by 70% lipopolysaccharide‐caused VCAM‐1 expression in mice. Anti‐PECAM/SOD colocalized with EEA‐1‐positive endothelial vesicles and quenched ROS produced in response to TNF. Inhibitors of NADPH oxidase and anion channel ClC3 blocked TNF‐induced VCAM expression, affirming that superoxide produced and transported by these proteins, respectively, mediates inflammatory signaling. Anti‐PECAM/SOD abolished VCAM expression caused by poly(I:C)‐induced activation of toll‐like receptor 3 localized in intracellular vesicles. These results directly implicate endosomal influx of superoxide in endothelial inflammatory response and suggest that site‐specific interception of this signal attained by targeted delivery of anti‐PECAM/SOD into endothelial endo‐somes may have anti‐inflammatory effects.—Shuvaev, V. V., Han, J., Yu, K. J., Huang, S., Hawkins, B. J., Madesh, M., Nakada, M., and Muzykantov, V. R. PECAM‐targeted delivery of SOD inhibits endothelial inflammatory response. FASEB J. 25, 348–357 (2011). www.fasebj.org


Journal of Pharmacology and Experimental Therapeutics | 2011

Catalase and Superoxide Dismutase Conjugated with Platelet-Endothelial Cell Adhesion Molecule Antibody Distinctly Alleviate Abnormal Endothelial Permeability Caused by Exogenous Reactive Oxygen Species and Vascular Endothelial Growth Factor

Jingyan Han; Vladimir V. Shuvaev; Vladimir R. Muzykantov

Reactive oxygen species (ROS) superoxide anion (O2⨪) and hydrogen peroxide (H2O2) produced by activated leukocytes and endothelial cells in sites of inflammation or ischemia cause endothelial barrier dysfunction that may lead to tissue edema. Antioxidant enzymes (AOEs) catalase and superoxide dismutase (SOD) conjugated with antibodies to platelet-endothelial cell adhesion molecule-1 (PECAM-1) specifically bind to endothelium, quench the corresponding ROS, and alleviate vascular oxidative stress and inflammation. In the present work, we studied the effects of anti-PECAM/catalase and anti-PECAM/SOD conjugates on the abnormal permeability manifested by transendothelial electrical resistance decline, increased fluorescein isothiocyanate-dextran influx, and redistribution of vascular endothelial-cadherin in human umbilical vein endothelial cell (HUVEC) monolayers. Anti-PECAM/catalase protected HUVEC monolayers against H2O2-induced endothelial barrier dysfunction. Polyethylene glycol-conjugated catalase exerted orders of magnitude lower endothelial uptake and no protective effect, similarly to IgG/catalase. Anti-PECAM/catalase, but not anti-PECAM/SOD, alleviated endothelial hyperpermeability caused by exposure to hypoxanthine/xanthine oxidase, implicating primarily H2O2 in the disruption of the endothelial barrier in this model. Thrombin-induced endothelial permeability was not affected by treatment with anti-PECAM/AOEs or the NADPH oxidase inhibitor apocynin or overexpression of AOEs, indicating that the endogenous ROS play no key role in thrombin-mediated endothelial barrier dysfunction. In contrast, anti-PECAM/SOD, but not anti-PECAM/catalase, inhibited a vascular endothelial growth factor (VEGF)-induced increase in endothelial permeability, identifying a key role of endogenous O2⨪ in the VEGF-mediated regulation of endothelial barrier function. Therefore, AOEs targeted to endothelial cells provide versatile molecular tools for testing the roles of specific ROS in vascular pathology and may be translated into remedies for these ROS-induced abnormalities.


Journal of Controlled Release | 2012

Antioxidant protection by PECAM-targeted delivery of a novel NADPH-oxidase inhibitor to the endothelium in vitro and in vivo

Elizabeth D. Hood; Colin F. Greineder; Chandra Dodia; Jingyan Han; Clementina Mesaros; Vladimir V. Shuvaev; Ian A. Blair; Aron B. Fisher; Vladimir R. Muzykantov

Oxidant stress caused by pathological elevation of reactive oxygen species (ROS) production in the endothelial cells lining the vascular lumen is an important component of many vascular and pulmonary disease conditions. NADPH oxidase (NOX) activated by pathological mediators including angiotensin and cytokines is a major source of endothelial ROS. In order to intercept this pathological pathway, we have encapsulated an indirect NOX inhibitor, MJ33, into immunoliposomes (Ab-MJ33/IL) targeted to endothelial marker platelet endothelial cell adhesion molecule (PECAM-1). Ab-MJ33/IL, but not control IgG-MJ33/IL are specifically bound to endothelium and attenuated angiotensin-induced ROS production in vitro and in vivo. Additionally, Ab-MJ33/IL inhibited endothelial expression of the inflammatory marker vascular cell adhesion molecule (VCAM) in cells and animals challenged with the cytokine TNF. Furthermore, Ab-MJ33/IL alleviated pathological disruption of endothelial permeability barrier function in cells exposed to vascular endothelial growth factor (VEGF) and in the lungs of mice challenged with lipopolysaccharide (LPS). Of note, the latter beneficial effect has been achieved both by prophylactic and therapeutic injection of Ab-MJ33/IL in animals. Therefore, specific suppression of ROS production by NOX in endothelium, attainable by Ab-MJ33/IL targeting, may help deciphering mechanisms of vascular oxidative stress and inflammation, and potentially improve treatment of these conditions.


Diabetes | 2016

AMPK Activation by Metformin Suppresses Abnormal Adipose Tissue Extracellular Matrix Remodeling and Ameliorates Insulin Resistance in Obesity

Luo T; Nocon A; Fry J; Sherban A; Rui X; Bingbing Jiang; Xu Xj; Jingyan Han; Yun Yan; Qin Yang; Li Q; Mengwei Zang

Fibrosis is emerging as a hallmark of metabolically dysregulated white adipose tissue (WAT) in obesity. Although adipose tissue fibrosis impairs adipocyte plasticity, little is known about how aberrant extracellular matrix (ECM) remodeling of WAT is initiated during the development of obesity. Here we show that treatment with the antidiabetic drug metformin inhibits excessive ECM deposition in WAT of ob/ob mice and mice with diet-induced obesity, as evidenced by decreased collagen deposition surrounding adipocytes and expression of fibrotic genes including the collagen cross-linking regulator LOX. Inhibition of interstitial fibrosis by metformin is likely attributable to the activation of AMPK and the suppression of transforming growth factor-β1 (TGF-β1)/Smad3 signaling, leading to enhanced systemic insulin sensitivity. The ability of metformin to repress TGF-β1-induced fibrogenesis is abolished by the dominant negative AMPK in primary cells from the stromal vascular fraction. TGF-β1-induced insulin resistance is suppressed by AMPK agonists and the constitutively active AMPK in 3T3L1 adipocytes. In omental fat depots of obese humans, interstitial fibrosis is also associated with AMPK inactivation, TGF-β1/Smad3 induction, aberrant ECM production, myofibroblast activation, and adipocyte apoptosis. Collectively, integrated AMPK activation and TGF-β1/Smad3 inhibition may provide a potential therapeutic approach to maintain ECM flexibility and combat chronically uncontrolled adipose tissue expansion in obesity.


Journal of Biological Chemistry | 2014

A Redox-resistant Sirtuin-1 Mutant Protects against Hepatic Metabolic and Oxidant Stress

Di Shao; Jessica L. Fry; Jingyan Han; Xiuyun Hou; David R. Pimentel; Reiko Matsui; Richard A. Cohen; Markus Bachschmid

Background: Sirtuin-1 improves metabolic disease, but oxidants may inhibit it. Results: Metabolic stress increased glutathione adducts, inactivated endogenous Sirtuin-1, and promoted apoptosis. A novel Sirtuin-1 oxidation-insensitive mutant or glutaredoxin-1 prevented metabolic dysregulation and apoptosis. Conclusion: A novel Sirtuin-1 mutant circumvents oxidation and more effectively inhibits metabolic dysregulation and apoptosis. Significance: Oxidative inactivation of Sirtuin-1 contributes to metabolic disease. Sirtuin-1 (SirT1), a member of the NAD+-dependent class III histone deacetylase family, is inactivated in vitro by oxidation of critical cysteine thiols. In a model of metabolic syndrome, SirT1 activation attenuated apoptosis of hepatocytes and improved liver function including lipid metabolism. We show in SirT1-overexpressing HepG2 cells that oxidants (nitrosocysteine and hydrogen peroxide) or metabolic stress (high palmitate and high glucose) inactivated SirT1 by reversible oxidative post-translational modifications (OPTMs) on three cysteines. Mutating these oxidation-sensitive cysteines to serine preserved SirT1 activity and abolished reversible OPTMs. Overexpressed mutant SirT1 maintained deacetylase activity and attenuated proapoptotic signaling, whereas overexpressed wild type SirT1 was less protective in metabolically or oxidant-stressed cells. To prove that OPTMs of SirT1 are glutathione (GSH) adducts, glutaredoxin-1 was overexpressed to remove this modification. Glutaredoxin-1 overexpression maintained endogenous SirT1 activity and prevented proapoptotic signaling in metabolically stressed HepG2 cells. The in vivo significance of oxidative inactivation of SirT1 was investigated in livers of high fat diet-fed C57/B6J mice. SirT1 deacetylase activity was decreased in the absence of changes in SirT1 expression and associated with a marked increase in OPTMs. These results indicate that glutathione adducts on specific SirT1 thiols may be responsible for dysfunctional SirT1 associated with liver disease in metabolic syndrome.


Journal of Biological Chemistry | 2014

Glutaredoxin-1 up-regulation induces soluble vascular endothelial growth factor receptor 1, attenuating post-ischemia limb revascularization

Colin Murdoch; Michaela Shuler; Dagmar J. Haeussler; Ryosuke Kikuchi; Priyanka Bearelly; Jingyan Han; Yosuke Watanabe; José J. Fuster; Kenneth Walsh; Ye-Shih Ho; Markus Bachschmid; Richard A. Cohen; Reiko Matsui

Background: Glutaredoxin-1 (Glrx) inhibits endothelial cell migration by reversing protein-glutathione adducts. Results: Revascularization after hind limb ischemia was inhibited in Glrx transgenic mice. Glrx overexpression increased soluble VEGF receptor 1 (sFlt) in endothelial cells via NF-κB-dependent Wnt5a production. Conclusion: Glrx enhances Wnt5a-induced anti-angiogenic sFlt in endothelial cells. Significance: Up-regulated Glrx inhibits VEGF signaling by increased sFlt causing impaired vascularization. Glutaredoxin-1 (Glrx) is a cytosolic enzyme that regulates diverse cellular function by removal of GSH adducts from S-glutathionylated proteins including signaling molecules and transcription factors. Glrx is up-regulated during inflammation and diabetes, and Glrx overexpression inhibits VEGF-induced EC migration. The aim was to investigate the role of up-regulated Glrx in EC angiogenic capacities and in vivo revascularization in the setting of hind limb ischemia. Glrx-overexpressing EC from Glrx transgenic (TG) mice showed impaired migration and network formation and secreted higher levels of soluble VEGF receptor 1 (sFlt), an antagonizing factor to VEGF. After hind limb ischemia surgery Glrx TG mice demonstrated impaired blood flow recovery, associated with lower capillary density and poorer limb motor function compared with wild type littermates. There were also higher levels of anti-angiogenic sFlt expression in the muscle and plasma of Glrx TG mice after surgery. Noncanonical Wnt5a is known to induce sFlt. Wnt5a was highly expressed in ischemic muscles and EC from Glrx TG mice, and exogenous Wnt5a induced sFlt expression and inhibited network formation in human microvascular EC. Adenoviral Glrx-induced sFlt in EC was inhibited by a competitive Wnt5a inhibitor. Furthermore, Glrx overexpression removed GSH adducts on p65 in ischemic muscle and EC and enhanced NF-κB activity, which was responsible for Wnt5a-sFlt induction. Taken together, up-regulated Glrx induces sFlt in EC via NF-κB-dependent Wnt5a, resulting in attenuated revascularization in hind limb ischemia. The Glrx-induced sFlt explains part of the mechanism of redox-regulated VEGF signaling.


PLOS ONE | 2013

Anti-Inflammatory Effect of Targeted Delivery of SOD to Endothelium: Mechanism, Synergism with NO Donors and Protective Effects In Vitro and In Vivo

Vladimir V. Shuvaev; Jingyan Han; Samira Tliba; Evguenia Arguiri; Melpo Christofidou-Solomidou; Servio H. Ramirez; Holly Dykstra; Yuri Persidsky; Dmitriy N. Atochin; Paul L. Huang; Vladimir R. Muzykantov

Pro-inflammatory activation of vascular endothelium is implicated in pathogenesis of severe conditions including stroke, infarction and sepsis. We have recently reported that superoxide dismutase (SOD) conjugated with antibodies (Ab/SOD) that provide targeted delivery into endothelial endosomes mitigates inflammatory endothelial activation by cytokines and agonists of Toll-like receptors (TLR). The goal of this study was to appraise potential utility and define the mechanism of this effect. Ab/SOD, but not non-targeted SOD injected in mice alleviated endotoxin-induced leukocyte adhesion in the cerebral vasculature and protected brain from ischemia-reperfusion injury. Transfection of endothelial cells with SOD, but not catalase inhibited NFκB signaling and expression of Vascular Cell Adhesion Molecule-1 induced by both cytokines and TLR agonists. These results affirmed that Ab/SOD-quenched superoxide anion produced by endothelial cells in response to proinflammatory agents mediates NFκB activation. Furthermore, Ab/SOD potentiates anti-inflammatory effect of NO donors in endothelial cells in vitro, as well as in the endotoxin-challenged mice. These results demonstrate the central role of intracellular superoxide as a mediator of pro-inflammatory activation of endothelium and support the notion of utility of targeted interception of this signaling pathway for management of acute vascular inflammation.


PLOS ONE | 2013

Vascular Immunotargeting to Endothelial Determinant ICAM-1 Enables Optimal Partnering of Recombinant scFv-Thrombomodulin Fusion with Endogenous Cofactor

Colin F. Greineder; Ann-Marie Chacko; Sergei Zaytsev; Blaine J. Zern; Ronald Carnemolla; Elizabeth D. Hood; Jingyan Han; Bi-Sen Ding; Charles T. Esmon; Vladimir R. Muzykantov

The use of targeted therapeutics to replenish pathologically deficient proteins on the luminal endothelial membrane has the potential to revolutionize emergency and cardiovascular medicine. Untargeted recombinant proteins, like activated protein C (APC) and thrombomodulin (TM), have demonstrated beneficial effects in acute vascular disorders, but have failed to have a major impact on clinical care. We recently reported that TM fused with an scFv antibody fragment to platelet endothelial cell adhesion molecule-1 (PECAM-1) exerts therapeutic effects superior to untargeted TM. PECAM-1 is localized to cell-cell junctions, however, whereas the endothelial protein C receptor (EPCR), the key co-factor of TM/APC, is exposed in the apical membrane. Here we tested whether anchoring TM to the intercellular adhesion molecule (ICAM-1) favors scFv/TM collaboration with EPCR. Indeed: i) endothelial targeting scFv/TM to ICAM-1 provides ∼15-fold greater activation of protein C than its PECAM-targeted counterpart; ii) blocking EPCR reduces protein C activation by scFv/TM anchored to endothelial ICAM-1, but not PECAM-1; and iii) anti-ICAM scFv/TM fusion provides more profound anti-inflammatory effects than anti-PECAM scFv/TM in a mouse model of acute lung injury. These findings, obtained using new translational constructs, emphasize the importance of targeting protein therapeutics to the proper surface determinant, in order to optimize their microenvironment and beneficial effects.


Journal of Controlled Release | 2015

Flow shear stress differentially regulates endothelial uptake of nanocarriers targeted to distinct epitopes of PECAM-1

Jingyan Han; Vladimir V. Shuvaev; Peter F. Davies; David M. Eckmann; Silvia Muro; Vladimir R. Muzykantov

Targeting nanocarriers (NC) to endothelial cell adhesion molecules including Platelet-Endothelial Cell Adhesion Molecule-1 (PECAM-1 or CD31) improves drug delivery and pharmacotherapy of inflammation, oxidative stress, thrombosis and ischemia in animal models. Recent studies unveiled that hydrodynamic conditions modulate endothelial endocytosis of NC targeted to PECAM-1, but the specificity and mechanism of effects of flow remain unknown. Here we studied the effect of flow on endocytosis by human endothelial cells of NC targeted by monoclonal antibodies Ab62 and Ab37 to distinct epitopes on the distal extracellular domain of PECAM. Flow in the range of 1-8dyn/cm(2), typical for venous vasculature, stimulated the uptake of spherical Ab/NC (~180nm diameter) carrying ~50 vs 200 Ab62 and Ab37 per NC, respectively. Effect of flow was inhibited by disruption of cholesterol-rich plasmalemma domains and deletion of PECAM-1 cytosolic tail. Flow stimulated endocytosis of Ab62/NC and Ab37/NC via eliciting distinct signaling pathways mediated by RhoA/ROCK and Src Family Kinases, respectively. Therefore, flow stimulates endothelial endocytosis of Ab/NC in a PECAM-1 epitope specific manner. Using ligands of binding to distinct epitopes on the same target molecule may enable fine-tuning of intracellular delivery based on the hemodynamic conditions in the vascular area of interest.

Collaboration


Dive into the Jingyan Han's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Blaine J. Zern

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge