Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jingyan Xu is active.

Publication


Featured researches published by Jingyan Xu.


Medical Physics | 2012

Technical assessment of a cone-beam CT scanner for otolaryngology imaging: Image quality, dose, and technique protocols

Jingyan Xu; Douglas D. Reh; J. P. Carey; Mahadevappa Mahesh; Jeffrey H. Siewerdsen

PURPOSE As cone-beam CT (CBCT) systems dedicated to various imaging specialties proliferate, technical assessment grounded in imaging physics is important to ensuring that image quality and radiation dose are quantified, understood, and justified. This paper involves technical assessment of a new CBCT scanner (CS 9300, Carestream Health, Rochester, NY) dedicated to imaging of the ear and sinuses for applications in otolaryngology-head and neck surgery (OHNS). The results guided evaluation of technique protocols to minimize radiation dose in a manner sufficient for OHNS imaging tasks. METHODS The technical assessment focused on the imaging performance and radiation dose for each of seven technique protocols recommended by the manufacturer: three sinus protocols and four ear (temporal bone) protocols. Absolute dose was measured using techniques adapted from AAPM Task Group Report No. 111, involving three stacked 16 cm diameter acrylic cylinders (CTDI phantoms) and a 0.6 cm(3) Farmer ionization chamber to measure central and peripheral dose. The central dose (D(o)) was also measured as a function of longitudinal position (z) within and beyond the primary radiation field to assess, for example, out-of-field dose to the neck. Signal-difference-to-noise ratio (SDNR) and Hounsfield unit (HU) accuracy were assessed in a commercially available quality assurance phantom (CATPHAN module CTP404, The Phantom Laboratory, Greenwich, NY) and a custom phantom with soft-tissue-simulating plastic inserts (Gammex RMI, Madison, WI). Spatial resolution was assessed both qualitatively (a line-pair pattern, CATPHAN module CTP528) and quantitatively (modulation transfer function, MTF, measured with a wire phantom). Imaging performance pertinent to various OHNS imaging tasks was qualitatively assessed using an anthropomorphic phantom as evaluated by two experienced OHNS specialists. RESULTS The technical assessment motivated a variety of modifications to the manufacturer-specified protocols to provide reduced radiation dose without compromising pertinent task-based imaging performance. The revised protocols yielded D(o) ranging 2.9-5.7 mGy, representing a ∼30% reduction in dose from the original technique chart. Out-of-field dose was ∼10% of D(o) at a distance of ∼8 cm from the field edge. Soft-tissue contrast resolution was fairly limited (water-brain SDNR ∼0.4-0.7) while high-contrast performance was reasonably good (SDNR ∼2-4 for a polystyrene insert in the CATPHAN). The scanner does not demonstrate (or claim to provide) accurate HU and exhibits a systematic error in CT number that could potentially be addressed by further calibration. The spatial resolution is ∼10-16 lp∕cm as assessed in a line-pair phantom, with MTF exceeding 10% out to ∼20 lp∕cm. Qualitative assessment by expert readers suggested limited soft-tissue visibility but excellent high-contrast (bone) visualization with isotropic spatial resolution suitable to a broad spectrum of pertinent sinus and temporal bone imaging tasks. CONCLUSIONS The CBCT scanner provided spatial and contrast resolution suitable to visualization of high-contrast morphology in sinus, maxillofacial, and otologic imaging applications. Rigorous technical assessment guided revision of technique protocols to reduce radiation dose while maintaining image quality sufficient for pertinent imaging tasks. The scanner appears well suited to high-contrast sinus and temporal bone imaging at doses comparable to or less than that reported for conventional diagnostic CT of the head.


Medical Imaging 2007: Physics of Medical Imaging | 2007

Investigation of the use of photon counting x-ray detectors with energy discrimination capability for material decomposition in micro-computed tomography

Eric C. Frey; X. Wang; Y. Du; Katsuyuki Taguchi; Jingyan Xu; Benjamin Tsui

Recently developed solid-state detectors combined with high-speed ASICs that allow individual pixel pulse processing may prove useful as detectors for small animal micro-computed tomography. One appealing feature of these photon-counting x-ray detectors (PCXDs) is their ability to discriminate between photons with different energies and count them in a small number (2-5) of energy windows. The data in these energy windows may be thought of as arising from multiple simultaneous x-ray beams with individual energy spectra, and could thus potentially be used to perform material composition analysis. The goal of this paper was to investigate the potential advantages of PCXDs with multiple energy window counting capability as compared to traditional integrating detectors combined with acquisition of images using x-ray beams with 2 different kVps. For the PCXDs, we investigated 3 potential sources of crosstalk: scatter in the object and detector, limited energy resolution, and pulse piluep. Using Monte Carlo simulations, we showed that scatter in the object and detector results in relatively little crosstalk between the data in the energy windows. To study the effects of energy resolution and pulse-pileup, we performed simulations evaluating the accuracy and precision of basis decomposition using a detector with 2 or 5 energy windows and a single kVp compared to an dual kVp acquisitions with an integrating detector. We found that, for noisy data, the precision of estimating the thickness of two basis materials for a range of material compositions was better for the single kVp multiple energy window acquisitions compared to the dual kVp acquisitions with an integrating detector. The advantage of the multi-window acquisition was somewhat reduced when the energy resolution was reduced to 10 keV and when pulse pileup was included, but standard deviations of the estimated thicknesses remained better by more than a factor of 2.


Medical Physics | 2014

Cascaded systems analysis of photon counting detectors

Jingyan Xu; Wojciech Zbijewski; Grace J. Gang; J. W. Stayman; Katsuyuki Taguchi; Mats Lundqvist; Erik Fredenberg; John A. Carrino; Jeffrey H. Siewerdsen

PURPOSE Photon counting detectors (PCDs) are an emerging technology with applications in spectral and low-dose radiographic and tomographic imaging. This paper develops an analytical model of PCD imaging performance, including the system gain, modulation transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). METHODS A cascaded systems analysis model describing the propagation of quanta through the imaging chain was developed. The model was validated in comparison to the physical performance of a silicon-strip PCD implemented on an experimental imaging bench. The signal response, MTF, and NPS were measured and compared to theory as a function of exposure conditions (70 kVp, 1-7 mA), detector threshold, and readout mode (i.e., the option for coincidence detection). The model sheds new light on the dependence of spatial resolution, charge sharing, and additive noise effects on threshold selection and was used to investigate the factors governing PCD performance, including the fundamental advantages and limitations of PCDs in comparison to energy-integrating detectors (EIDs) in the linear regime for which pulse pileup can be ignored. RESULTS The detector exhibited highly linear mean signal response across the system operating range and agreed well with theoretical prediction, as did the system MTF and NPS. The DQE analyzed as a function of kilovolt (peak), exposure, detector threshold, and readout mode revealed important considerations for system optimization. The model also demonstrated the important implications of false counts from both additive electronic noise and charge sharing and highlighted the system design and operational parameters that most affect detector performance in the presence of such factors: for example, increasing the detector threshold from 0 to 100 (arbitrary units of pulse height threshold roughly equivalent to 0.5 and 6 keV energy threshold, respectively), increased the f50 (spatial-frequency at which the MTF falls to a value of 0.50) by ∼30% with corresponding improvement in DQE. The range in exposure and additive noise for which PCDs yield intrinsically higher DQE was quantified, showing performance advantages under conditions of very low-dose, high additive noise, and high fidelity rejection of coincident photons. CONCLUSIONS The model for PCD signal and noise performance agreed with measurements of detector signal, MTF, and NPS and provided a useful basis for understanding complex dependencies in PCD imaging performance and the potential advantages (and disadvantages) in comparison to EIDs as well as an important guide to task-based optimization in developing new PCD imaging systems.


Medical Physics | 2016

Technical Note: spektr 3.0—A computational tool for x‐ray spectrum modeling and analysis

Joshua Punnoose; Jingyan Xu; A. Sisniega; Wojciech Zbijewski; Jeffrey H. Siewerdsen

Purpose: A computational toolkit (spektr 3.0) has been developed to calculate x-ray spectra based on the tungsten anode spectral model using interpolating cubic splines (TASMICS) algorithm, updating previous work based on the tungsten anode spectral model using interpolating polynomials (TASMIP) spectral model. The toolkit includes a matlab (The Mathworks, Natick, MA) function library and improved user interface (UI) along with an optimization algorithm to match calculated beam quality with measurements. Methods: The spektr code generates x-ray spectra (photons/mm2/mAs at 100 cm from the source) using TASMICS as default (with TASMIP as an option) in 1 keV energy bins over beam energies 20–150 kV, extensible to 640 kV using the TASMICS spectra. An optimization tool was implemented to compute the added filtration (Al and W) that provides a best match between calculated and measured x-ray tube output (mGy/mAs or mR/mAs) for individual x-ray tubes that may differ from that assumed in TASMICS or TASMIP and to account for factors such as anode angle. Results: The median percent difference in photon counts for a TASMICS and TASMIP spectrum was 4.15% for tube potentials in the range 30–140 kV with the largest percentage difference arising in the low and high energy bins due to measurement errors in the empirically based TASMIP model and inaccurate polynomial fitting. The optimization tool reported a close agreement between measured and calculated spectra with a Pearson coefficient of 0.98. Conclusions: The computational toolkit, spektr, has been updated to version 3.0, validated against measurements and existing models, and made available as open source code. Video tutorials for the spektr function library, UI, and optimization tool are available.


Physics in Medicine and Biology | 2015

Statistical reconstruction for cone-beam CT with a post-artifact-correction noise model: application to high-quality head imaging

Hao Dang; J. W. Stayman; A. Sisniega; Jingyan Xu; Wojciech Zbijewski; Xinhui Wang; David H. Foos; Nafi Aygun; V. E. Koliatsos; Jeffrey H. Siewerdsen

Non-contrast CT reliably detects fresh blood in the brain and is the current front-line imaging modality for intracranial hemorrhage such as that occurring in acute traumatic brain injury (contrast ~40-80 HU, size  >  1 mm). We are developing flat-panel detector (FPD) cone-beam CT (CBCT) to facilitate such diagnosis in a low-cost, mobile platform suitable for point-of-care deployment. Such a system may offer benefits in the ICU, urgent care/concussion clinic, ambulance, and sports and military theatres. However, current FPD-CBCT systems face significant challenges that confound low-contrast, soft-tissue imaging. Artifact correction can overcome major sources of bias in FPD-CBCT but imparts noise amplification in filtered backprojection (FBP). Model-based reconstruction improves soft-tissue image quality compared to FBP by leveraging a high-fidelity forward model and image regularization. In this work, we develop a novel penalized weighted least-squares (PWLS) image reconstruction method with a noise model that includes accurate modeling of the noise characteristics associated with the two dominant artifact corrections (scatter and beam-hardening) in CBCT and utilizes modified weights to compensate for noise amplification imparted by each correction. Experiments included real data acquired on a FPD-CBCT test-bench and an anthropomorphic head phantom emulating intra-parenchymal hemorrhage. The proposed PWLS method demonstrated superior noise-resolution tradeoffs in comparison to FBP and PWLS with conventional weights (viz. at matched 0.50 mm spatial resolution, CNR = 11.9 compared to CNR = 5.6 and CNR = 9.9, respectively) and substantially reduced image noise especially in challenging regions such as skull base. The results support the hypothesis that with high-fidelity artifact correction and statistical reconstruction using an accurate post-artifact-correction noise model, FPD-CBCT can achieve image quality allowing reliable detection of intracranial hemorrhage.


Physics in Medicine and Biology | 2015

High-fidelity artifact correction for cone-beam CT imaging of the brain.

A. Sisniega; Wojciech Zbijewski; Jingyan Xu; Hao Dang; J. W. Stayman; John Yorkston; Nafi Aygun; V. E. Koliatsos; Jeffrey H. Siewerdsen

CT is the frontline imaging modality for diagnosis of acute traumatic brain injury (TBI), involving the detection of fresh blood in the brain (contrast of 30-50 HU, detail size down to 1 mm) in a non-contrast-enhanced exam. A dedicated point-of-care imaging system based on cone-beam CT (CBCT) could benefit early detection of TBI and improve direction to appropriate therapy. However, flat-panel detector (FPD) CBCT is challenged by artifacts that degrade contrast resolution and limit application in soft-tissue imaging. We present and evaluate a fairly comprehensive framework for artifact correction to enable soft-tissue brain imaging with FPD CBCT. The framework includes a fast Monte Carlo (MC)-based scatter estimation method complemented by corrections for detector lag, veiling glare, and beam hardening.The fast MC scatter estimation combines GPU acceleration, variance reduction, and simulation with a low number of photon histories and reduced number of projection angles (sparse MC) augmented by kernel de-noising to yield a runtime of ~4 min per scan. Scatter correction is combined with two-pass beam hardening correction. Detector lag correction is based on temporal deconvolution of the measured lag response function. The effects of detector veiling glare are reduced by deconvolution of the glare response function representing the long range tails of the detector point-spread function. The performance of the correction framework is quantified in experiments using a realistic head phantom on a testbench for FPD CBCT.Uncorrected reconstructions were non-diagnostic for soft-tissue imaging tasks in the brain. After processing with the artifact correction framework, image uniformity was substantially improved, and artifacts were reduced to a level that enabled visualization of ~3 mm simulated bleeds throughout the brain. Non-uniformity (cupping) was reduced by a factor of 5, and contrast of simulated bleeds was improved from ~7 to 49.7 HU, in good agreement with the nominal blood contrast of 50 HU. Although noise was amplified by the corrections, the contrast-to-noise ratio (CNR) of simulated bleeds was improved by nearly a factor of 3.5 (CNR = 0.54 without corrections and 1.91 after correction). The resulting image quality motivates further development and translation of the FPD-CBCT system for imaging of acute TBI.


IEEE Transactions on Medical Imaging | 2014

Quantifying the Importance of the Statistical Assumption in Statistical X-ray CT Image Reconstruction

Jingyan Xu; Benjamin M. W. Tsui

Statistical image reconstruction (SIR) is a promising approach to reducing radiation dose in clinical computerized tomography (CT) scans. Clinical CT scanners use energy-integrating detectors. The CT signal follows a compound Poisson distribution, its probability density function (PDF) does not have an analytical form hence cannot be used in an SIR method. The goal of this work is to quantify the effects of using an approximate statistical assumption in SIR methods for clinical CT applications. We apply a pseudo-Ideal Observer (pIO) to simulated CT projection data of the fanbeam geometry at different dose levels. The simulation models the polychromatic X-ray tube spectrum, the effects of the bowtie filter, and the energy-integrating detectors. The pIO uses a pseudo likelihood function (pLF) to calculate the pseudo likelihood ratio, which is the decision variable used by the pIO in a binary detection task. The pLF is an approximation to the true LF of the underlying data. The pIO has inferior performance than the IO unless the pLF coincides with the LF; this performance difference quantifies the closeness between the pseudo likelihood and the exact one. Using lesion detectability in a signal known exactly, background known exactly binary detection task as a figure-of-merit, our results show that at down to 0.1% of a reference tube current level I0, the pIO that uses a Poisson approximation, or a matched variance Gaussian approximation in either the transmission or the line integral domain, achieves 99% the performance of the IO. The constant variance Gaussian approximation has only 70%-80% of the IO performance. At tube currents lower than 0.1% I0, the performance difference is more substantial. We conclude that at current clinical dose levels, it is important to account for the mean-dependent variance in CT projection data in SIR problem formulation, the exact PDF of the CT signal is not as important.


Physics in Medicine and Biology | 2016

Modeling and design of a cone-beam CT head scanner using task-based imaging performance optimization

Jingyan Xu; A. Sisniega; Wojciech Zbijewski; Hao Dang; J. W. Stayman; Xinhui Wang; David H. Foos; Nafi Aygun; V. E. Koliatsos; Jeffrey H. Siewerdsen

Detection of acute intracranial hemorrhage (ICH) is important for diagnosis and treatment of traumatic brain injury, stroke, postoperative bleeding, and other head and neck injuries. This paper details the design and development of a cone-beam CT (CBCT) system developed specifically for the detection of low-contrast ICH in a form suitable for application at the point of care. Recognizing such a low-contrast imaging task to be a major challenge in CBCT, the system design began with a rigorous analysis of task-based detectability including critical aspects of system geometry, hardware configuration, and artifact correction. The imaging performance model described the three-dimensional (3D) noise-equivalent quanta using a cascaded systems model that included the effects of scatter, scatter correction, hardware considerations of complementary metal-oxide semiconductor (CMOS) and flat-panel detectors (FPDs), and digitization bit depth. The performance was analyzed with respect to a low-contrast (40-80 HU), medium-frequency task representing acute ICH detection. The task-based detectability index was computed using a non-prewhitening observer model. The optimization was performed with respect to four major design considerations: (1) system geometry (including source-to-detector distance (SDD) and source-to-axis distance (SAD)); (2) factors related to the x-ray source (including focal spot size, kVp, dose, and tube power); (3) scatter correction and selection of an antiscatter grid; and (4) x-ray detector configuration (including pixel size, additive electronics noise, field of view (FOV), and frame rate, including both CMOS and a-Si:H FPDs). Optimal design choices were also considered with respect to practical constraints and available hardware components. The model was verified in comparison to measurements on a CBCT imaging bench as a function of the numerous design parameters mentioned above. An extended geometry (SAD = 750 mm, SDD  = 1100 mm) was found to be advantageous in terms of patient dose (20 mGy) and scatter reduction, while a more isocentric configuration (SAD = 550 mm, SDD  = 1000 mm) was found to give a more compact and mechanically favorable configuration with minor tradeoff in detectability. An x-ray source with a 0.6 mm focal spot size provided the best compromise between spatial resolution requirements and x-ray tube power. Use of a modest anti-scatter grid (8:1 GR) at a 20 mGy dose provided slight improvement (~5-10%) in the detectability index, but the benefit was lost at reduced dose. The potential advantages of CMOS detectors over FPDs were quantified, showing that both detectors provided sufficient spatial resolution for ICH detection, while the former provided a potentially superior low-dose performance, and the latter provided the requisite FOV for volumetric imaging in a centered-detector geometry. Task-based imaging performance modeling provides an important starting point for CBCT system design, especially for the challenging task of ICH detection, which is somewhat beyond the capabilities of existing CBCT platforms. The model identifies important tradeoffs in system geometry and hardware configuration, and it supports the development of a dedicated CBCT system for point-of-care application. A prototype suitable for clinical studies is in development based on this analysis.


Medical Imaging 2007: Physics of Medical Imaging | 2007

Microcomputed tomography with a photon-counting x-ray detector

Eric C. Frey; Katsuyuki Taguchi; M. Kapusta; Jingyan Xu; T. Orskaug; I. Ninive; Douglas J. Wagenaar; Bradley E. Patt; Benjamin Tsui

In this work we used a novel CdTe photon counting x-ray detector capable of very high count rates to perform x-ray micro-computed tomography (microCT). The detector had 2 rows of 384 square pixels each 1 mm in size. Charge signals from individual photons were integrated with a shaping time of ~60 ns and processed by an ASIC located in close proximity to the pixels. The ASIC had 5 energy thresholds with associated independent counters for each pixel. Due to the thresholding, it is possible to eliminate dark-current contributions to image noise. By subtracting counter outputs from adjacent thresholds, it is possible to obtain the number of x-ray photon counts in 5 adjacent energy windows. The detector is capable of readout times faster than 5 ms. A prototype bench-top specimen μCT scanner was assembled having distances from the tube to the object and detector of 11 cm and 82 cm, respectively. We used a conventional x-ray source to produce 80 kVp x-ray beams with tube currents up to 400 μA resulting in count rates on the order of 600 kcps per pixel at the detector. Both phantoms and a dead mouse were imaged using acquisition times of 1.8 s per view at 1° steps around the object. The count rate loss (CRL) characteristics of the detector were measured by varying the tube current and corrected for using a paralyzable model. Images were reconstructed using analytical fan-beam reconstruction. The reconstructed images showed good contrast and noise characteristics and those obtained from different energy windows demonstrated energy-dependent contrast, thus potentially allowing for material decomposition.


Medical Physics | 2014

Dual-energy cone-beam CT with a flat-panel detector: effect of reconstruction algorithm on material classification.

Wojciech Zbijewski; Grace J. Gang; Jingyan Xu; Adam S. Wang; J. W. Stayman; Katsuyuki Taguchi; John A. Carrino; Jeffrey H. Siewerdsen

PURPOSE Cone-beam CT (CBCT) with a flat-panel detector (FPD) is finding application in areas such as breast and musculoskeletal imaging, where dual-energy (DE) capabilities offer potential benefit. The authors investigate the accuracy of material classification in DE CBCT using filtered backprojection (FBP) and penalized likelihood (PL) reconstruction and optimize contrast-enhanced DE CBCT of the joints as a function of dose, material concentration, and detail size. METHODS Phantoms consisting of a 15 cm diameter water cylinder with solid calcium inserts (50-200 mg/ml, 3-28.4 mm diameter) and solid iodine inserts (2-10 mg/ml, 3-28.4 mm diameter), as well as a cadaveric knee with intra-articular injection of iodine were imaged on a CBCT bench with a Varian 4343 FPD. The low energy (LE) beam was 70 kVp (+0.2 mm Cu), and the high energy (HE) beam was 120 kVp (+0.2 mm Cu, +0.5 mm Ag). Total dose (LE+HE) was varied from 3.1 to 15.6 mGy with equal dose allocation. Image-based DE classification involved a nearest distance classifier in the space of LE versus HE attenuation values. Recognizing the differences in noise between LE and HE beams, the LE and HE data were differentially filtered (in FBP) or regularized (in PL). Both a quadratic (PLQ) and a total-variation penalty (PLTV) were investigated for PL. The performance of DE CBCT material discrimination was quantified in terms of voxelwise specificity, sensitivity, and accuracy. RESULTS Noise in the HE image was primarily responsible for classification errors within the contrast inserts, whereas noise in the LE image mainly influenced classification in the surrounding water. For inserts of diameter 28.4 mm, DE CBCT reconstructions were optimized to maximize the total combined accuracy across the range of calcium and iodine concentrations, yielding values of ∼ 88% for FBP and PLQ, and ∼ 95% for PLTV at 3.1 mGy total dose, increasing to ∼ 95% for FBP and PLQ, and ∼ 98% for PLTV at 15.6 mGy total dose. For a fixed iodine concentration of 5 mg/ml and reconstructions maximizing overall accuracy across the range of insert diameters, the minimum diameter classified with accuracy >80% was ∼ 15 mm for FBP and PLQ and ∼ 10 mm for PLTV, improving to ∼ 7 mm for FBP and PLQ and ∼ 3 mm for PLTV at 15.6 mGy. The results indicate similar performance for FBP and PLQ and showed improved classification accuracy with edge-preserving PLTV. A slight preference for increased smoothing of the HE data was found. DE CBCT discrimination of iodine and bone in the knee was demonstrated with FBP and PLTV at 6.2 mGy total dose. CONCLUSIONS For iodine concentrations >5 mg/ml and detail size ∼ 20 mm, material classification accuracy of >90% was achieved in DE CBCT with both FBP and PL at total doses <10 mGy. Optimal performance was attained by selection of reconstruction parameters based on the differences in noise between HE and LE data, typically favoring stronger smoothing of the HE data, and by using penalties matched to the imaging task (e.g., edge-preserving PLTV in areas of uniform enhancement).

Collaboration


Dive into the Jingyan Xu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin Tsui

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. W. Stayman

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

A. Sisniega

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Katsuyuki Taguchi

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hao Dang

Johns Hopkins University

View shared research outputs
Researchain Logo
Decentralizing Knowledge