Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jingyao Mu is active.

Publication


Featured researches published by Jingyao Mu.


Molecular Therapy | 2013

Grape Exosome-like Nanoparticles Induce Intestinal Stem Cells and Protect Mice From DSS-Induced Colitis

Songwen Ju; Jingyao Mu; Terje Dokland; Xiaoying Zhuang; Qilong Wang; Hong Jiang; Xiaoyu Xiang; Zhong-Bin Deng; Baomei Wang; Lifeng Zhang; Mary R. Roth; Ruth Welti; James A. Mobley; Yan Jun; Donald R. Miller; Huang-Ge Zhang

Food-derived exosome-like nanoparticles pass through the intestinal tract throughout our lives, but little is known about their impact or function. Here, as a proof of concept, we show that the cells targeted by grape exosome-like nanoparticles (GELNs) are intestinal stem cells whose responses underlie the GELN-mediated intestinal tissue remodeling and protection against dextran sulfate sodium (DSS)-induced colitis. This finding is further supported by the fact that coculturing of crypt or sorted Lgr5⁺ stem cells with GELNs markedly improved organoid formation. GELN lipids play a role in induction of Lgr5⁺ stem cells, and the liposome-like nanoparticles (LLNs) assembled with lipids from GELNs are required for in vivo targeting of intestinal stem cells. Blocking β-catenin-mediated signaling pathways of GELN recipient cells attenuates the production of Lgr5⁺ stem cells. Thus, GELNs not only modulate intestinal tissue renewal processes, but can participate in the remodeling of it in response to pathological triggers.


Molecular Nutrition & Food Research | 2014

Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles

Jingyao Mu; Xiaoying Zhuang; Qilong Wang; Hong Jiang; Zhong-Bin Deng; Baomei Wang; Lifeng Zhang; Sham S. Kakar; Yan Jun; Donald R. Miller; Huang-Ge Zhang

SCOPE Exosomes, small vesicles participating in intercellular communication, have been extensively studied recently; however, the role of edible plant derived exosomes in interspecies communication has not been investigated. Here, we investigate the biological effects of edible plant derived exosome-like nanoparticles (EPDENs) on mammalian cells. METHODS AND RESULTS In this study, exosome-like nanoparticles from four edible plants were isolated and characterized. We show that these EPDENs contain proteins, lipids, and microRNA. EPDENs are taken up by intestinal macrophages and stem cells. The results generated from EPDEN-transfected macrophages indicate that ginger EPDENs preferentially induce the expression of the antioxidation gene, heme oxygenase-1 and the anti-inflammatory cytokine, IL-10; whereas grapefruit, ginger, and carrot EPDENs promote activation of nuclear factor like (erythroid-derived 2). Furthermore, analysis of the intestines of canonical Wnt-reporter mice, i.e. B6.Cg-Tg(BAT-lacZ)3Picc/J mice, revealed that the numbers of β-galactosidase(+) (β-Gal) intestinal crypts are increased, suggesting that EPDEN treatment of mice leads to Wnt-mediated activation of the TCF4 transcription machinery in the crypts. CONCLUSION The data suggest a role for EPDEN-mediated interspecies communication by inducing expression of genes for anti-inflammation cytokines, antioxidation, and activation of Wnt signaling, which are crucial for maintaining intestinal homeostasis.


Oncogene | 2011

miR-155 promotes macroscopic tumor formation yet inhibits tumor dissemination from mammary fat pads to the lung by preventing EMT.

Xiaoyu Xiang; Zhuang X; Songwen Ju; Shuangyin Zhang; Hong Jiang; Jingyao Mu; Lifeng Zhang; Donald R. Miller; William E. Grizzle; Huang-Ge Zhang

A micro-RNA, miR-155, is overexpressed in many types of cancer cells, including breast cancer, and its role(s) in tumor metastasis has been studied on a very limited basis. Tumor metastasis is a multi-step process with the last step in the process being formation of macroscopic tumor in organs distant from the primary tumor site. This step is the least studied. Here, we report that stable expression of miR-155 in 4T1 breast tumor cells reduces significantly the aggressiveness of tumor cell dissemination as a result of preventing epithelial-to-mesenchymal transition (EMT) of tumor cells in vivo. Further, miR-155 directly suppresses the expression of the transcription factor TCF4, which is an important regulator of EMT. However, when tumor cells are injected directly into the bloodstream, miR-155 remarkably promotes macroscopic tumor formation in the lung. Analysis of gene expression profiling identified a group of genes that are associated with promoting macroscopic tumor formation in the lung. Importantly, most of these genes are overexpressed in epithelial cells. Our findings provide new insight into how miR-155 modulates the development of tumor metastasis. This study suggests that the location of tumor cells overexpressing miR-155 is a critical factor: in mammary fat pads miR-155 prevents tumor dissemination; whereas in the lung miR-155 apparently maintains the epithelial phenotype of tumor cells that is critical for macroscopic tumor formation.


Nature Communications | 2013

Delivery of therapeutic agents by nanoparticles made of grapefruit-derived lipids

Qilong Wang; Xiaoying Zhuang; Jingyao Mu; Zhong-Bin Deng; Hong Jiang; Lifeng Zhang; Xiaoyu Xiang; Baomei Wang; Jun Yan; Donald R. Miller; Huang-Ge Zhang

Although the use of nanotechnology for the delivery of a wide range of medical treatments has potential to reduce adverse effects associated with drug therapy, tissue-specific delivery remains challenging. Here we show that nanoparticles made of grapefruit-derived lipids, which we call grapefruit-derived nanovectors (GNVs), can transport chemotherapeutic agents, siRNA, DNA expression vectors and proteins to different types of cells. We demonstrate the in vivo targeting specificity of GNVs by co-delivering therapeutic agents with folic acid, which in turn leads to significantly increasing targeting efficiency to cells expressing folate receptors. The therapeutic potential of GNVs was further demonstrated by enhancing the chemotherapeutic inhibition of tumor growth in two tumor animal models. GNVs are less toxic than nanoparticles made of synthetic lipids and, when injected intravenously into pregnant mice, do not pass the placental barrier, suggesting they may be a useful tool for drug delivery.


PLOS ONE | 2012

Grhl2 Determines the Epithelial Phenotype of Breast Cancers and Promotes Tumor Progression

Xiaoyu Xiang; Zhong-Bin Deng; Xiaoying Zhuang; Songwen Ju; Jingyao Mu; Hong Jiang; Lifeng Zhang; Jun Yan; Donald R. Miller; Huang-Ge Zhang

Until now the essential transcription factor that determines the epithelial phenotype of breast cancer has not been identified and its role in epithelial-to-mesenchymal transition (EMT) and tumor progression remain unclear. Here, by analyzing large expression profiles of human breast cancer cells, we found an extraordinary correlation between the expression of Grainyhead transcription factor Grhl2 and epithelial marker E-cadherin. Knockdown of Grhl2 expression by shRNA in human mammary epithelial cell MCF10A leads to down-regulation of E-cadherin and EMT. Grhl2 is down-regulated in disseminated cancer cells that have undergone EMT, and over-expression of Grhl2 is sufficient to induce epithelial gene expression. Large clinical datasets reveal that expression of Grhl2 is significantly associated with poor relapse free survival and increased risk of metastasis in breast cancer patients. In mouse models, over-expression of Grhl2 significantly promotes tumor growth and metastasis. Further testing of several Grhl2 regulated genes leads to the same conclusions that the tumorigenic and metastatic potentials of tumor cells are linked to epithelial phenotype but not mesenchymal phenotype. In conclusion, our findings indicate that Grhl2 plays an essential role in the determination of epithelial phenotype of breast cancers, EMT and tumor progression.


Molecular Therapy | 2014

Targeted Drug Delivery to Intestinal Macrophages by Bioactive Nanovesicles Released from Grapefruit

Baomei Wang; Xiaoying Zhuang; Zhong-Bin Deng; Hong Jiang; Jingyao Mu; Qilong Wang; Xiaoyu Xiang; Haixun Guo; Lifeng Zhang; Gerald W. Dryden; Jun Yan; Donald R. Miller; Huang-Ge Zhang

The gut mucosal immune system is considered to play an important role in counteracting potential adverse effects of food-derived antigens including nanovesicles. Whether nanovesicles naturally released from edible fruit work in a coordinated manner with gut immune cells to maintain the gut in a noninflammatory status is not known. Here, as proof of concept, we demonstrate that grapefruit-derived nanovesicles (GDNs) are selectively taken up by intestinal macrophages and ameliorate dextran sulfate sodium (DSS)-induced mouse colitis. These effects were mediated by upregulating the expression of heme oxygenase-1 (HO-1) and inhibiting the production of IL-1β and TNF-α in intestinal macrophages. The inherent biocompatibility and biodegradability, stability at wide ranges of pH values, and targeting of intestinal macrophages led us to further develop a novel GDN-based oral delivery system. Incorporating methotrexate (MTX), an anti-inflammatory drug, into GDNs and delivering the MTX-GDNs to mice significantly lowered the MTX toxicity when compared with free MTX, and remarkably increased its therapeutic effects in DSS-induced mouse colitis. These findings demonstrate that GDNs can serve as immune modulators in the intestine, maintain intestinal macrophage homeostasis, and can be developed for oral delivery of small molecule drugs to attenuate inflammatory responses in human disease.


Nature Communications | 2017

MVP-mediated exosomal sorting of miR-193a promotes colon cancer progression

Yun Teng; Yi Ren; Xin Hu; Jingyao Mu; Abhilash Samykutty; Xiaoying Zhuang; Zhong-Bin Deng; Anil Kumar; Lifeng Zhang; Michael L. Merchant; Jun Yan; Donald M. Miller; Huang-Ge Zhang

Exosomes are emerging mediators of intercellular communication; whether the release of exosomes has an effect on the exosome donor cells in addition to the recipient cells has not been investigated to any extent. Here, we examine different exosomal miRNA expression profiles in primary mouse colon tumour, liver metastasis of colon cancer and naive colon tissues. In more advanced disease, higher levels of tumour suppressor miRNAs are encapsulated in the exosomes. miR-193a interacts with major vault protein (MVP). Knockout of MVP leads to miR-193a accumulation in the exosomal donor cells instead of exosomes, inhibiting tumour progression. Furthermore, miR-193a causes cell cycle G1 arrest and cell proliferation repression through targeting of Caprin1, which upregulates Ccnd2 and c-Myc. Human colon cancer patients with more advanced disease show higher levels of circulating exosomal miR-193a. In summary, our data demonstrate that MVP-mediated selective sorting of tumour suppressor miRNA into exosomes promotes tumour progression.


Journal of Immunology | 2013

Exosome-like Nanoparticles from Intestinal Mucosal Cells Carry Prostaglandin E2 and Suppress Activation of Liver NKT Cells

Zhong-Bin Deng; Xiaoying Zhuang; Songwen Ju; Xiaoyu Xiang; Jingyao Mu; Yuelong Liu; Hong Jiang; Lifeng Zhang; James A. Mobley; Craig J. McClain; Wenke Feng; William E. Grizzle; Jun Yan; Donald R. Miller; Mitchell Kronenberg; Huang-Ge Zhang

Regulation and induction of anergy in NKT cells of the liver can inhibit autoimmune and antitumor responses by mechanisms that are poorly understood. We investigated the effects of PGE2, delivered by intestinal, mucus-derived, exosome-like nanoparticles (IDENs), on NKT cells in mice. In this study, we demonstrate that IDENs migrate to the liver where they induce NKT cell anergy. These effects were mediated by an IDENs’ PGE2. Blocking PGE2 synthesis attenuated IDENs inhibition of induction of IFN-γ and IL-4 by α-galactosylceramide (α-GalCer)–stimulated liver NKT cells in a PGE2 E-type prostanoid 2/E-type prostanoid 4 receptor–mediated manner. Proinflammatory conditions enhanced the migration of IDENs to the liver where α-GalCer and PGE2 induced NKT anergy in response to subsequent α-GalCer stimulation. These findings demonstrate that IDENs carrying PGE2 can be transferred from the intestine to the liver, where they act as immune modulators, inducing an anergic-like state of NKT cells. These reagents might be developed as therapeutics for autoimmune liver diseases.


Cancer Research | 2015

Grapefruit-Derived Nanovectors Use an Activated Leukocyte Trafficking Pathway to Deliver Therapeutic Agents to Inflammatory Tumor Sites.

Qilong Wang; Yi Ren; Jingyao Mu; Nejat K. Egilmez; Xiaoyin Zhuang; Zhong-Bin Deng; Lifeng Zhang; Jun Yan; Donald R. Miller; Huang-Ge Zhang

Inflammation is a hallmark of cancer. Activated immune cells are intrinsically capable of homing to inflammatory sites. Using three inflammatory-driven disease mouse models, we show that grapefruit-derived nanovectors (GNV) coated with inflammatory-related receptor enriched membranes of activated leukocytes (IGNVs) are enhanced for homing to inflammatory tumor tissues. Blocking LFA-1 or CXCR1 and CXCR2 on the IGNVs significantly inhibits IGNV homing to the inflammatory tissue. The therapeutic potential of IGNVs was further demonstrated by enhancing the chemotherapeutic effect as shown by inhibition of tumor growth in two tumor models and inhibiting the inflammatory effects of dextran sulfate sodium-induced mouse colitis. The fact that IGNVs are capable of homing to inflammatory tissue and that chemokines are overexpressed in diseased human tissue provides the rationale for using IGNVs to more directly deliver therapeutic agents to inflammatory tumor sites and the rationale for the use of IGNVs as treatment for certain cancers in personalized medicine.


Oncogene | 2017

Exosomes miR-126a released from MDSC induced by DOX treatment promotes lung metastasis

Zhong-Bin Deng; Yuan Rong; Yun Teng; Xiaoying Zhuang; Abhilash Samykutty; Jingyao Mu; Lifeng Zhang; Pengxiao Cao; Jun Yan; Donald R. Miller; Huang-Ge Zhang

Acquired resistance to chemotherapy remains a major stumbling block in cancer treatment. Chronic inflammation has a crucial role in induction of chemoresistance and results, in part, from the induction and expansion of inflammatory cells that include myeloid-derived suppressor cells (MDSCs) and IL-13+ Th2 cells. The mechanisms that lead to induction of activated MDSCs and IL-13+ Th2 cells have not yet been identified. Here we demonstrated that doxorubicin (DOX) treatment of 4T1 breast tumor-bearing mice led to the induction of IL-13R+miR-126a+ MDSCs (DOX-MDSC). DOX-MDSC promote breast tumor lung metastasis through MDSC miR-126a+ exosomal-mediated induction of IL-13+ Th2 cells and tumor angiogenesis. The induction of DOX-MDSC is regulated in a paracrine manner. DOX treatment not only increases interleukin (IL)-33 released from breast tumor cells, which is crucial for the induction of IL-13+ Th2 cells, but it also participates in the induction of IL-13 receptors and miR-126a expressed on/in the MDSCs. IL-13 released from IL-13+Th2 cells then promotes the production of DOX-MDSC and MDSC miR-126a+ exosomes via MDSC IL-13R. MDSC miR-126a+ exosomes further induce IL13+ Th2 cells in a positive feed-back loop manner. We also showed that MDSC miR-126a rescues DOX-induced MDSC death in a S100A8/A9-dependent manner and promotes tumor angiogenesis. Our findings provide insight into the MDSC exosomal-mediated chemoresistance mechanism, which will be useful for the design of inhibitors targeting the blocking of induction of miR-126a+ MDSCs.

Collaboration


Dive into the Jingyao Mu's collaboration.

Top Co-Authors

Avatar

Huang-Ge Zhang

University of Louisville

View shared research outputs
Top Co-Authors

Avatar

Lifeng Zhang

University of Louisville

View shared research outputs
Top Co-Authors

Avatar

Zhong-Bin Deng

University of Louisville

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun Yan

University of Louisville

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hong Jiang

University of Louisville

View shared research outputs
Top Co-Authors

Avatar

Qilong Wang

University of Louisville

View shared research outputs
Top Co-Authors

Avatar

Xiaoyu Xiang

University of Louisville

View shared research outputs
Top Co-Authors

Avatar

Yun Teng

University of Louisville

View shared research outputs
Researchain Logo
Decentralizing Knowledge