Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jingyuan E. Chen is active.

Publication


Featured researches published by Jingyuan E. Chen.


NeuroImage | 2015

BOLD fractional contribution to resting-state functional connectivity above 0.1 Hz.

Jingyuan E. Chen; Gary H. Glover

Blood oxygen level dependent (BOLD) spontaneous signals from resting-state (RS) brains have typically been characterized by low-pass filtered timeseries at frequencies ≤ 0.1 Hz, and studies of these low-frequency fluctuations have contributed exceptional understanding of the baseline functions of our brain. Very recently, emerging evidence has demonstrated that spontaneous activities may persist in higher frequency bands (even up to 0.8 Hz), while presenting less variable network patterns across the scan duration. However, as an indirect measure of neuronal activity, BOLD signal results from an inherently slow hemodynamic process, which in fact might be too slow to accommodate the observed high-frequency functional connectivity (FC). To examine whether the observed high-frequency spontaneous FC originates from BOLD contrast, we collected RS data as a function of echo time (TE). Here we focus on two specific resting state networks - the default-mode network (DMN) and executive control network (ECN), and the major findings are fourfold: (1) we observed BOLD-like linear TE-dependence in the spontaneous activity at frequency bands up to 0.5 Hz (the maximum frequency that can be resolved with TR=1s), supporting neural relevance of the RSFC at a higher frequency range; (2) conventional models of hemodynamic response functions must be modified to support resting state BOLD contrast, especially at higher frequencies; (3) there are increased fractions of non-BOLD-like contributions to the RSFC above the conventional 0.1 Hz (non-BOLD/BOLD contrast at 0.4-0.5 Hz is ~4 times that at <0.1 Hz); and (4) the spatial patterns of RSFC are frequency-dependent. Possible mechanisms underlying the present findings and technical concerns regarding RSFC above 0.1 Hz are discussed.


Frontiers in Human Neuroscience | 2016

NIRS-Based Hyperscanning Reveals Inter-brain Neural Synchronization during Cooperative Jenga Game with Face-to-Face Communication

Ning Liu; Charis Mok; Emily E. Witt; Anjali H. Pradhan; Jingyuan E. Chen; Allan L. Reiss

Functional near-infrared spectroscopy (fNIRS) is an increasingly popular technology for studying social cognition. In particular, fNIRS permits simultaneous measurement of hemodynamic activity in two or more individuals interacting in a naturalistic setting. Here, we used fNIRS hyperscanning to study social cognition and communication in human dyads engaged in cooperative and obstructive interaction while they played the game of Jenga™. Novel methods were developed to identify synchronized channels for each dyad and a structural node-based spatial registration approach was utilized for inter-dyad analyses. Strong inter-brain neural synchrony (INS) was observed in the posterior region of the right middle and superior frontal gyrus, in particular Brodmann area 8 (BA8), during cooperative and obstructive interaction. This synchrony was not observed during the parallel game play condition and the dialog section, suggesting that BA8 was involved in goal-oriented social interaction such as complex interactive movements and social decision-making. INS was also observed in the dorsomedial prefrontal cortex (dmPFC), in particular Brodmann 9, during cooperative interaction only. These additional findings suggest that BA9 may be particularly engaged when theory-of-mind (ToM) is required for cooperative social interaction. The new methods described here have the potential to significantly extend fNIRS applications to social cognitive research.


NeuroImage | 2015

Introducing co-activation pattern metrics to quantify spontaneous brain network dynamics

Jingyuan E. Chen; Catie Chang; Michael D. Greicius; Gary H. Glover

Recently, fMRI researchers have begun to realize that the brains intrinsic network patterns may undergo substantial changes during a single resting state (RS) scan. However, despite the growing interest in brain dynamics, metrics that can quantify the variability of network patterns are still quite limited. Here, we first introduce various quantification metrics based on the extension of co-activation pattern (CAP) analysis, a recently proposed point-process analysis that tracks state alternations at each individual time frame and relies on very few assumptions; then apply these proposed metrics to quantify changes of brain dynamics during a sustained 2-back working memory (WM) task compared to rest. We focus on the functional connectivity of two prominent RS networks, the default-mode network (DMN) and executive control network (ECN). We first demonstrate less variability of global Pearson correlations with respect to the two chosen networks using a sliding-window approach during WM task compared to rest; then we show that the macroscopic decrease in variations in correlations during a WM task is also well characterized by the combined effect of a reduced number of dominant CAPs, increased spatial consistency across CAPs, and increased fractional contributions of a few dominant CAPs. These CAP metrics may provide alternative and more straightforward quantitative means of characterizing brain network dynamics than time-windowed correlation analyses.


Neuropsychology Review | 2015

Functional Magnetic Resonance Imaging Methods

Jingyuan E. Chen; Gary H. Glover

Since its inception in 1992, Functional Magnetic Resonance Imaging (fMRI) has become an indispensible tool for studying cognition in both the healthy and dysfunctional brain. FMRI monitors changes in the oxygenation of brain tissue resulting from altered metabolism consequent to a task-based evoked neural response or from spontaneous fluctuations in neural activity in the absence of conscious mentation (the “resting state”). Task-based studies have revealed neural correlates of a large number of important cognitive processes, while fMRI studies performed in the resting state have demonstrated brain-wide networks that result from brain regions with synchronized, apparently spontaneous activity. In this article, we review the methods used to acquire and analyze fMRI signals.


Behavioural Brain Research | 2016

Influence of the cortical midline structures on moral emotion and motivation in moral decision-making

Hyemin Han; Jingyuan E. Chen; Changwoo Jeong; Gary H. Glover

The present study aims to examine the relationship between the cortical midline structures (CMS), which have been regarded to be associated with selfhood, and moral decision making processes at the neural level. Traditional moral psychological studies have suggested the role of moral self as the moderator of moral cognition, so activity of moral self would present at the neural level. The present study examined the interaction between the CMS and other moral-related regions by conducting psycho-physiological interaction analysis of functional images acquired while 16 subjects were solving moral dilemmas. Furthermore, we performed Granger causality analysis to demonstrate the direction of influences between activities in the regions in moral decision-making. We first demonstrate there are significant positive interactions between two central CMS seed regions-i.e., the medial prefrontal cortex (MPFC) and posterior cingulate cortex (PCC)-and brain regions associated with moral functioning including the cerebellum, brainstem, midbrain, dorsolateral prefrontal cortex, orbitofrontal cortex and anterior insula (AI); on the other hand, the posterior insula (PI) showed significant negative interaction with the seed regions. Second, several significant Granger causality was found from CMS to insula regions particularly under the moral-personal condition. Furthermore, significant dominant influence from the AI to PI was reported. Moral psychological implications of these findings are discussed. The present study demonstrated the significant interaction and influence between the CMS and morality-related regions while subject were solving moral dilemmas. Given that, activity in the CMS is significantly involved in human moral functioning.


Brain Imaging and Behavior | 2014

Differences in functional activity between boys with pure oppositional defiant disorder and controls during a response inhibition task: a preliminary study

Yan Zhu; Kui Ying; Ji Wang; Linyan Su; Jingyuan E. Chen; Fan Lin; Dongyang Cai; Ming Zhou; Daxing Wu; Courtney Guo; Shi Wang

Functional Magnetic Resonance Imaging (fMRI) of inhibitory control has only been investigated in patients with attention deficit hyperactivity disorder (ADHD) and conduct disorder (CD). The objective of this study was to investigate the differences of functional areas associated with inhibitory control between boys with pure oppositional defiant disorder (ODD) and controls during a response inhibition task using functional magnetic resonance imaging (fMRI). Eleven boys with pure ODD and ten control boys, aged 10 to 12, performed a GoStop response inhibition task in this study. The task has a series of “go” trials to establish a pre-potent response tendency and a number of “stop” trials to test subjects’ ability to withhold their responses. During the GoStop task, greater activation in the dorsolateral parts of the bilateral inferior frontal gyrus, left middle frontal gyrus (lMFG) and right superior frontal gyrus (rSFG) activation was seen in the ODD boys. Additionally, reduced activation in regions of the right inferior frontal gyrus (rIFG) was seen in the ODD boys in comparison with the control group. The results may suggest that the higher activation in areas adjacent to the rIFG could be the cause of reduced activation in the rIFG; although this is speculative and requires additional supporting evidence. The findings further suggest that ODD is a less pronounced functional disorder compared to ADHD and CD.


Brain | 2017

Nuisance Regression of High-Frequency Functional Magnetic Resonance Imaging Data: Denoising Can Be Noisy

Jingyuan E. Chen; Hesamoddin Jahanian; Gary H. Glover

Recently, emerging studies have demonstrated the existence of brain resting-state spontaneous activity at frequencies higher than the conventional 0.1 Hz. A few groups utilizing accelerated acquisitions have reported persisting signals beyond 1 Hz, which seems too high to be accommodated by the sluggish hemodynamic process underpinning blood oxygen level-dependent contrasts (the upper limit of the canonical model is ∼0.3 Hz). It is thus questionable whether the observed high-frequency (HF) functional connectivity originates from alternative mechanisms (e.g., inflow effects, proton density changes in or near activated neural tissue) or rather is artificially introduced by improper preprocessing operations. In this study, we examined the influence of a common preprocessing step-whole-band linear nuisance regression (WB-LNR)-on resting-state functional connectivity (RSFC) and demonstrated through both simulation and analysis of real dataset that WB-LNR can introduce spurious network structures into the HF bands of functional magnetic resonance imaging (fMRI) signals. Findings of present study call into question whether published observations on HF-RSFC are partly attributable to improper data preprocessing instead of actual neural activities.


Neuroimaging Clinics of North America | 2017

Methods and Considerations for Dynamic Analysis of Functional MR Imaging Data

Jingyuan E. Chen; Mikail Rubinov; Catie Chang

Functional MR imaging (fMR imaging) studies have recently begun to examine spontaneous changes in interregional interactions (functional connectivity) over seconds to minutes, and their relation to natural shifts in cognitive and physiologic states. This practice opens the potential for uncovering structured, transient configurations of coordinated brain activity whose features may provide novel cognitive and clinical biomarkers. However, analysis of these time-varying phenomena requires careful differentiation between neural and nonneural contributions to the fMR imaging signal and thorough validation and statistical testing. In this article, the authors present an overview of methodological and interpretational considerations in this emerging field.


Archive | 2016

The cortical midline structures (CMS) are activated under moral task conditions. The CMS interact with other regions under moral task conditions. Seed regions in the CMS influence the insula under the moral-personal condition.

Hyemin Han; Jingyuan E. Chen; Changwoo Jeong; Gary H. Glover


Neuropsychology Review | 2015

Erratum to: Functional Magnetic Resonance Imaging Methods

Jingyuan E. Chen; Gary H. Glover

Collaboration


Dive into the Jingyuan E. Chen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Catie Chang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Changwoo Jeong

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mikail Rubinov

Howard Hughes Medical Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge