Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jingyun Luan is active.

Publication


Featured researches published by Jingyun Luan.


Cancer immunology research | 2017

Targeting CD47 and Autophagy Elicited Enhanced Antitumor Effects in Non–Small Cell Lung Cancer

Xuyao Zhang; Jiajun Fan; Shaofei Wang; Yubin Li; Yichen Wang; Song Li; Jingyun Luan; Ziyu Wang; Ping Song; Qicheng Chen; Wenzhi Tian; Dianwen Ju

Blocking CD47 interactions was a potent antitumor therapy for NSCLC. Cells resist death by increasing autophagy; simultaneously inhibiting autophagy provided a synergistic antitumor effect, providing a scientific basis for enhancing the efficacy of immune checkpoint inhibitors. CD47-specific antibodies and fusion proteins that block CD47–SIRPα signaling are employed as antitumor agents for several cancers. Here, we investigated the synergistic antitumor effect of simultaneously targeting CD47 and autophagy in non–small cell lung cancer (NSCLC). SIRPαD1-Fc, a novel CD47-targeting fusion protein, was generated and was found to increase the phagocytic and cytotoxic activities of macrophages against NSCLC cells. During this process, autophagy was markedly triggered, which was characterized by the three main stages of autophagic flux, including formation and accumulation of autophagosomes, fusion of autophagosomes with lysosomes, and degradation of autophagosomes in lysosomes. Meanwhile, reactive oxygen species and inactivation of mTOR were shown to be involved in autophagy initiation in SIRPαD1-Fc–treated cells, indicating a probable mechanism for autophagy activation after targeting CD47 by SIRPαD1-Fc. Inhibition of autophagy enhanced macrophage-mediated phagocytosis and cytotoxicity against SIRPαD1-Fc–treated NSCLC cells. In addition, simultaneously targeting both CD47 and autophagy in NSCLC xenograft models elicited enhanced antitumor effects, with recruitment of macrophages, activated caspase-3, and overproduction of ROS at the tumor site. Our data elucidated the cytoprotective role of autophagy in CD47-targeted therapy and highlighted the potential approach for NSCLC treatment by simultaneously targeting CD47 and autophagy. Cancer Immunol Res; 5(5); 363–75. ©2017 AACR. See related Spotlight by Kaufman, p. 355.


Cell Death and Disease | 2017

A novel and promising therapeutic approach for NSCLC: recombinant human arginase alone or combined with autophagy inhibitor

Weitao Shen; Xuyao Zhang; Xiang Fu; Jiajun Fan; Jingyun Luan; Zhonglian Cao; Ping Yang; Zhongyuan Xu; Dianwen Ju

Recombinant human arginase (rhArg), an enzyme capable of depleting arginine, has been shown to be an effective therapeutic approach for various cancers. Non-small-cell lung cancer (NSCLC), a histological subtype of pulmonary carcinoma, has a high rate of morbidity and mortality in the world. Thus, the need for novel and more effective treatment is urgent. In this study, it is the first time to report that rhArg could induce significant cytotoxicity and caspase-dependent apoptosis in NSCLC cells. Subsequently, our research revealed that rhArg dramatically stimulated autophagic response in NSCLC cells, which was proved by the formation and accumulation of autophagosomes and the conversion of microtubule-associated protein light chain 3 (LC3) from LC3-I to LC3-II. Furthermore, blocking autophagy by chloroquine or LY294002 remarkably enhanced rhArg-induced cytotoxicity and caspase-dependent apoptosis, suggesting that autophagy acted a cytoprotective role in rhArg-treated NSCLC cells. Further experiments showed that two signaling pathways including the Akt/mTOR and extracellular signal-regulated kinase pathway, and mitochondrial-derived reactive oxygen species (ROS) production were involved in rhArg-induced autophagy and apoptosis. Meanwhile, N-acetyl-L-cysteine, a common antioxidant, was employed to scavenge ROS, and we detected that it could significantly block rhArg-induced autophagy and cytotoxicity, indicating that ROS played a vital role in arginine degradation therapy. Besides, xenograft experiment showed that combination with autophagy inhibitor potentiated the anti-tumor efficacy of rhArg in vivo. Therefore, these results provided a novel prospect and viewpoint that autophagy acted a cytoprotective role in rhArg-treated NSCLC cells, and treatment with rhArg alone or combined with autophagy inhibitor could be a novel and promising therapeutic approach for NSCLC in vivo and in vitro.


Carcinogenesis | 2018

Disrupting CD47-SIRPα axis alone or combined with autophagy depletion for the therapy of glioblastoma

Xuyao Zhang; Wei Chen; Jiajun Fan; Shaofei Wang; Zongshu Xian; Jingyun Luan; Yubin Li; Yichen Wang; Yanyang Nan; Man Luo; Song Li; Wenzhi Tian; Dianwen Ju

CD47-targeting immune checkpoint inhibitors have been investigated for immunotherapy of several cancers, glioblastoma, one of the most common tumors in brain, was still a challenge for CD47-targeting therapy. Herein, we reported novel strategies for glioblastoma therapy via blocking CD47-signal regulatory protein-α (SIRPα) by SIRPα-Fc alone or in combination with autophagy inhibition. Our results showed that SIRPα-Fc increased macrophages-triggered cytotoxicity and phagocytosis of glioblastoma cells then elicited potent anti-tumor efficacy. During the treatment, SIRPα-Fc induced autophagy and autophagic flux in glioblastoma cells and Akt/mammalian target of rapamycin (mTOR) inactivation was participated in the autophagy activation. Inhibition of autophagy by pharmacological agents or small-interfering RNA increased SIRPα-Fc-triggered macrophage phagocytosis and cytotoxicity. Importantly, when compared with SIRPα-Fc treatment, blocking both CD47/SIRPα and autophagy significantly increased infiltration of macrophages and apoptosis of tumor cells, triggering potentiated anti-glioblastoma effect and extended median survival. Further experiments showed that adaptive immune response, including CD8+ T-cell subsets, was also played a crucial role in SIRPα-Fc-induced glioblastoma rejection. Our results indicated that SIRPα-Fc alone or combined with autophagy inhibitors elicited potent anti-glioblastoma effect, highlighting potential therapeutic strategies of glioblastoma via blocking CD47/SIRPα alone or in combination with autophagy inhibitor.


Theranostics | 2017

Tethering Interleukin-22 to Apolipoprotein A-I Ameliorates Mice from Acetaminophen-induced Liver Injury

Wei Chen; Xuyao Zhang; Jiajun Fan; Wenjing Zai; Jingyun Luan; Yubin Li; Shaofei Wang; Qicheng Chen; Yichen Wang; Yanxu Liang; Dianwen Ju

Increasing evidence indicates that interleukin-22 (IL-22) holds tremendous potential as a protective agent in preventing liver injury, but its pleiotropic effects and pathogenic role in carcinogenesis, rheumatoid arthritis and psoriasis restrict its systemic application. Here, we first developed a nanoparticle (liposIA) as a liver-targeted agent through IL-22 tethered to apolipoprotein A-I (ApoA-I) in a gene therapy vector. LiposIA was prepared using thin film dispersion method and the complexes exhibited desirable nanoparticle size, fine polydisperse index, highly efficient transfection, and excellent serum and storage stability. Biodistribution and hepatic STAT3 phosphorylation studies revealed that IL-22 tethered to ApoA-I led to highly efficient liver targeting. More importantly, our studies showed that a single-dose of liposIA was able to protect mice against acetaminophen-induced liver injury and did not initiate inflammatory response or systemic toxicity in vivo. During this process, activated STAT3/Erk and Akt/mTOR signaling transductions were observed, as well as inhibition of reactive oxygen species (ROS) generation, which prevented mitochondrial dysfunction. These studies demonstrated that IL-22 tethered to apolipoprotein A-I could target and ameliorate acetaminophen-induced acute liver injury, which highlighted that a targeted strategy for IL-22 delivery might have broad utility for the protection of hepatocellular damage.


Cell Death and Disease | 2017

Interleukin-22 ameliorated renal injury and fibrosis in diabetic nephropathy through inhibition of NLRP3 inflammasome activation

Shaofei Wang; Yubin Li; Jiajun Fan; Xuyao Zhang; Jingyun Luan; Qi Bian; Tao Ding; Yichen Wang; Ziyu Wang; Ping Song; Daxiang Cui; Xiaobin Mei; Dianwen Ju

Diabetic nephropathy (DN) is one of the most lethal complications of diabetes mellitus with metabolic disorders and chronic inflammation. Although the cytokine IL-22 was initially implicated in the pathogenesis of chronic inflammatory diseases, recent studies suggested that IL-22 could suppress inflammatory responses and alleviate tissue injury. Herein, we examined the role of IL-22 in DN. We found that serum levels of IL-22 were significantly downregulated in both patients and mice with DN. The expression of IL-22 was further decreased with the progression of DN, whereas IL-22 gene therapy significantly ameliorated renal injury and mesangial matrix expansion in mice with established nephropathy. IL-22 could also markedly reduce high glucose-induced and TGF-β1-induced overexpression of fibronectin and collagen IV in mouse renal glomerular mesangial cells in a dose-dependent manner, suggesting the potential role of IL-22 to inhibit the overproduction of ECM in vitro. Simultaneously, IL-22 gene therapy drastically alleviated renal fibrosis and proteinuria excretion in DN. In addition, IL-22 gene therapy markedly attenuated hyperglycemia and metabolic disorders in streptozotocin-induced experimental diabetic mice. Notably, IL-22 drastically reversed renal activation of NLRP3, cleavage of caspase-1, and the maturation of IL-1β in DN, suggesting unexpected anti-inflammatory function of IL-22 via suppressing the activation of NLRP3 inflammasome in vivo. Moreover, IL-22 markedly downregulated high glucose-induced activation of NLRP3 inflammasome in renal mesangial cells in a dose-dependent manner, indicating that the effects of IL-22 on NLRP3 inflammasome activation was independent of improved glycemic control. These results suggested that nephroprotection by IL-22 in DN was most likely associated with reduced activation of NLRP3 inflammasome. In conclusion, our finding demonstrated that IL-22 could exert favorable effects on DN via simultaneously alleviating systemic metabolic syndrome and downregulating renal NLRP3/caspase-1/IL-1β pathway, suggesting that IL-22 might have therapeutic potential for the treatment of DN.


Phytomedicine | 2018

Kidney protection effects of dihydroquercetin on diabetic nephropathy through suppressing ROS and NLRP3 inflammasome

Tao Ding; Shaofei Wang; Xuyao Zhang; Wenjing Zai; Jiajun Fan; Wei Chen; Qi Bian; Jingyun Luan; Yilan Shen; Yanda Zhang; Dianwen Ju; Xiaobin Mei

BACKGROUND Diabetic nephropathy (DN), the leading cause of end-stage renal disease, is acknowledged as an independent risk factor for cardiovascular disease, which underlines the urgent need for new medications to DN. Dihydroquercetin (DHQ), an important natural dihydroflavone, exerts significant antioxidant, anti-inflammatory, and antifibrotic properties, but its effects on DN have not been investigated yet. PURPOSE We aimed to explore the kidney protection effects of DHQ on DN rats induced by high-fat diet/streptozotocin in vivo and the underlying mechanisms of DHQ on renal cells including HBZY-1 and HK2 exposed to high glucose in vitro. METHODS Major biochemical indexes were measured including urine microalbumin, fasting serum glucose, serum levels of creatinine, total cholesterol and low density lipoprotein cholesterol. Renal histologic sections were stained with hematoxylin-eosin, periodic acid-Schiff and Masson. The cell proliferation was assessed by MTT assay. Reactive oxygen species (ROS) generation was detected by DCFH-DA assay and laser scanning confocal microscope. Expression of all proteins was examined by western-blot. RESULTS In high-fat diet/streptozotocin-induced DN rats, DHQ at the dose of 100 mg/kg/day significantly attenuated the increasing urine microalbumin excretion, hyperglycemia and lipid metabolism disorders, and mitigated renal histopathological lesions. In in vitro studies, DHQ significantly suppressed cell proliferation and the excessive ROS generation, and alleviated the activation of nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome and the expression of renal fibrosis-associated proteins in renal cells exposed to high glucose. CONCLUSION The results revealed that DHQ possesses kidney protection effects including attenuating urine microalbumin excretion, hyperglycemia and lipid metabolism disorders, and mitigating renal histopathological lesions on DN, and one of the possible renal-protective mechanisms is suppressing ROS and NLRP3 inflammasome.


Frontiers in Immunology | 2018

NOD-Like Receptor Protein 3 Inflammasome-Dependent IL-1β Accelerated ConA-Induced Hepatitis

Jingyun Luan; Xuyao Zhang; Shaofei Wang; Yubin Li; Jiajun Fan; Wei Chen; Wenjing Zai; Sijia Wang; Yichen Wang; Mingkuan Chen; Guangxun Meng; Dianwen Ju

Autoimmune hepatitis (AIH) is a progressive inflammatory disorders of unknown etiology, characterized by immune-mediated destruction of hepatocytes and massive production of cytokines. Interleukin-1β is a pleiotropic proinflammatory cytokine and well known to be critical in a variety of autoimmune diseases. However, the role of interleukin-1β (IL-1β) in AIH is still indistinct. Here, we first investigated the significance of NOD-like receptor protein 3 (NLRP3) inflammasome-dependent IL-1β in the pathogenesis of AIH with a murine model of immune-mediated hepatitis induced by Concanavalin A (ConA). In ConA-treated mice, pathogenic elevated NLRP3, Cleaved caspase-1 and IL-1β levels, as well as an inflammatory cell death known as pyroptosis predominantly occurred in the livers. Strikingly, NLRP3−/− and caspase-1−/− mice were broadly protected from hepatitis as determined by decreased histological liver injury, serum aminotransferase (ALT)/aspartate transaminase levels, and pyroptosis. In vivo intervention with recombinant human interleukin-1 receptor antagonist (rhIL-1Ra) strongly suppressed ConA-induced hepatitis by decreasing tumor necrosis factor-alpha (TNF-α) and interleukin-17 (IL-17) secretion, and inflammatory cell infiltration into livers. Additionally, rhIL-1Ra-pretreated mice developed significantly reduced NLRP3 inflammasome activation and reactive oxygen species (ROS) generation. Scavenging of ROS by N-acetyl-cysteine also attenuated NLRP3 inflammasome activation and liver inflammation, indicating that the essential role of ROS in mediating NLRP3 inflammasome activation in ConA-induced hepatitis. In conclusion, our results demonstrated that NLRP3 inflammasome-dependent IL-1β production was crucial in the pathogenesis of ConA-induced hepatitis, which shed light on the development of promising therapeutic strategies for AIH by blocking NLRP3 inflammasome and IL-1β.


Applied Microbiology and Biotechnology | 2018

Dihydroquercetin ameliorated acetaminophen-induced hepatic cytotoxicity via activating JAK2/STAT3 pathway and autophagy

Wenjing Zai; Wei Chen; Jingyun Luan; Jiajun Fan; Xuyao Zhang; Zimei Wu; Tao Ding; Dianwen Ju; Hongrui Liu

Acetaminophen (APAP) overdose is currently the leading cause of acute liver disease, but therapeutic treatment strategies are commonly limited. Although dihydroquercetin (DHQ) is an attractive botanical antioxidant, its protective potential for liver disease remains elusive. The present study investigated the protective effects of DHQ against APAP-induced hepatic cytotoxicity. Primary mouse hepatocytes were treated with different concentrations of DHQ followed by APAP administration. Our data showed that DHQ relieved APAP-induced growth inhibition and lactate dehydrogenase (LDH) release in a dose-dependent manner, as well as inhibited APAP-induced necrosis and extracellular signal regulated kinase-c-Jun-N-terminal kinase (ERK-JNK) stress. In addition, reactive oxygen species (ROS) accumulation and mitochondria dysfunction were also reversed by DHQ treatment. Further study revealed that DHQ induced phosphorylation of Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) cascade and thus modulated expression of anti-apoptotic Bcl-2 family proteins. Moreover, DHQ induced autophagy which mediated its protective effects in hepatocytes. The protection was abrogated through pharmacological blockage of autophagy by chloroquine (CQ). These studies demonstrated, for the first time, that DHQ possessed hepatocellular protective effects in the context of APAP-induced cytotoxicity and subsequently revealed that the mechanisms comprised activation of JAK2/STAT3 signaling pathway and autophagy. These altogether highlighted the significant therapeutic potential of this agent during acute liver failure and other types of liver diseases.


Oncotarget | 2017

Autophagy suppression potentiates the anti-glioblastoma effect of asparaginase in vitro and in vivo

Qicheng Chen; Li Ye; Jiajun Fan; Xuyao Zhang; Huan Wang; Siyang Liao; Ping Song; Ziyu Wang; Shaofei Wang; Yubin Li; Jingyun Luan; Yichen Wang; Wei Chen; Wenjing Zai; Ping Yang; Zhonglian Cao; Dianwen Ju

Asparaginase has been reported to be effective in the treatment of various leukemia and several malignant solid cancers. However, the anti-tumor effect of asparaginase is always restricted due to complicated mechanisms. Herein, we investigated the mechanisms of how glioblastoma resisted asparaginase treatment and reported a novel approach to enhance the anti-glioblastoma effect of asparaginase. We found that asparaginase could induce growth inhibition and caspase-dependent apoptosis in U87MG/U251MG glioblastoma cells. Meanwhile, autophagy was activated as indicated by autophagosomes formation and upregulated expression of LC3-II. Importantly, abolishing autophagy using chloroquine (CQ) and LY294002 enhanced the cytotoxicity and apoptosis induced by asparaginase in U87MG/U251MG cells. Further study proved that Akt/mTOR and Erk signaling pathways participated in autophagy induction, while reactive oxygen species (ROS) served as an intracellular regulator for both cytotoxicity and autophagy in asparaginase-treated U87MG/U251MG cells. Moreover, combination treatment with autophagy inhibitor CQ significantly enhanced anti-glioblastoma efficacy of asparaginase in U87MG cell xenograft model. Taken together, our results demonstrated that inhibition of autophagy potentiated the anti-tumor effect of asparagine depletion on glioblastoma, indicating that targeting autophagy and asparagine could be a potential approach for glioblastoma treatment.Asparaginase has been reported to be effective in the treatment of various leukemia and several malignant solid cancers. However, the anti-tumor effect of asparaginase is always restricted due to complicated mechanisms. Herein, we investigated the mechanisms of how glioblastoma resisted asparaginase treatment and reported a novel approach to enhance the anti-glioblastoma effect of asparaginase. We found that asparaginase could induce growth inhibition and caspase-dependent apoptosis in U87MG/U251MG glioblastoma cells. Meanwhile, autophagy was activated as indicated by autophagosomes formation and upregulated expression of LC3-II. Importantly, abolishing autophagy using chloroquine (CQ) and LY294002 enhanced the cytotoxicity and apoptosis induced by asparaginase in U87MG/U251MG cells. Further study proved that Akt/mTOR and Erk signaling pathways participated in autophagy induction, while reactive oxygen species (ROS) served as an intracellular regulator for both cytotoxicity and autophagy in asparaginase-treated U87MG/U251MG cells. Moreover, combination treatment with autophagy inhibitor CQ significantly enhanced anti-glioblastoma efficacy of asparaginase in U87MG cell xenograft model. Taken together, our results demonstrated that inhibition of autophagy potentiated the anti-tumor effect of asparagine depletion on glioblastoma, indicating that targeting autophagy and asparagine could be a potential approach for glioblastoma treatment.


Cell Death and Disease | 2017

The role of autophagy in asparaginase-induced immune suppression of macrophages

Ping Song; Ziyu Wang; Xuyao Zhang; Jiajun Fan; Yubin Li; Qicheng Chen; Shaofei Wang; Peipei Liu; Jingyun Luan; Li Ye; Dianwen Ju

Erwinia asparaginase, a bacteria-derived enzyme drug, has been used in the treatment of various cancers, especially acute lymphoblastic leukemia (ALL). One of the most significant side effects associated with asparaginase administration is immune suppression, which limits its application in clinic. Macrophages are phagocytic immune cells and have a central role in inflammation and host defense. We reported here that asparaginase disturbed the function of macrophages including phagocytosis, proliferation, ROS and nitric oxide secretion, interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) secretion, and major histocompatibility complex II (MHC-II) molecule expression, thus induced immune suppression in interferon-γ and lipopolysaccharide-stimulated macrophages. We also observed that asparaginase inhibited autophagy in macrophages via activating Akt/mTOR and suppressing Erk1/2 signaling pathway as evidenced by less formation of autophagosomes, downregulation of autophagy-related protein LC3-II, and decreased number of autophagy-like vacuoles. Further study discovered that treatment with autophagy inhibitor 3-MA in place of asparaginase on activated macrophages could also downregulate phagocytosis, cytokine secretion, and MHC-II expression. Moreover, incubation with autophagy inducer trehalose restored the capacity of phagocytosis, IL-6 and TNF-α secretion, and MHC-II expression in macrophages. These results prove the important role of autophagy in the function of macrophages, and activation of autophagy can overcome asparaginase-induced immune suppression in macrophages.

Collaboration


Dive into the Jingyun Luan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge