Jingyun Wang
Dalian University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jingyun Wang.
Toxicology in Vitro | 2011
Jingyun Wang; Pingping Sun; Yongming Bao; J.H Liu; Lijia An
The increasing use of carbon nanotubes (CNTs) in biomedical applications underlines the importance of its potential toxic effects to human health. In the present study, we first exposed PC12 cells, a commonly used in vitro model for neurotoxicity study, to two kinds of commercially available single-walled carbon nanotubes (SWCNTs), to investigate the effect of SWCNTs on nervous system in vitro. The decrease of PC12 cells viability was time and dose-dependent with exposure to SWCNTs demonstrated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, lactate dehydrogenase (LDH) release and morphological observation. Flow cytometry analysis showed that the PC12 cells cycle was arrested in the G2/M phase, and their apoptotic rate induced by SWCNTs was dose-dependent. Further studies revealed SWCNTs decreased mitochondrial membrane potential (MMP), induced the formation of reactive oxygen species (ROS) and increased the level of lipid peroxide and decreased the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT) and the content of glutathione (GSH) in a time and dose-dependent manner. These findings reveal that SWCNTs may induce oxidative stress to nervous system in vivo, causing the occurrence of diseases related to cellular injuries of neuronal cells, such as neurodegenerative disorders, and demonstrating the necessity of further research in vivo.
Journal of Biotechnology | 2009
Xinqing Zhao; Chuang Xue; X.M. Ge; Wenjie Yuan; Jingyun Wang; Feng-Wu Bai
The effects of zinc supplementation were investigated in the continuous ethanol fermentation using self-flocculating yeast. Zinc sulfate was added at the concentrations of 0.01, 0.05 and 0.1 g l(-1), respectively. Reduced average floc sizes were observed in all the zinc-supplemented cultures. Both the ethanol tolerance and thermal tolerance were significantly improved by zinc supplements, which correlated well with the increased ergosterol and trehalose contents in the yeast flocs. The highest ethanol concentration by 0.05 g l(-1) zinc sulfate supplementation attained 114.5 g l(-1), in contrast to 104.1 g l(-1) in the control culture. Glycerol production was decreased by zinc supplementations, with the lowest level 3.21 g l(-1), about 58% of the control. Zinc content in yeast cells was about 1.4 microMol g(-1) dry cell weight, about sixfold higher than that of control in all the zinc-supplemented cultures, and close correlation of zinc content in yeast cells with the cell viability against ethanol and heat shock treatment was observed. These studies suggest that exogenous zinc addition led to a reprogramming of cellular metabolic network, resulting in enhanced ethanol tolerance and ethanol production.
Phytomedicine | 2008
Xiuli Zhang; Aihong Zhang; Bo Jiang; Yongming Bao; Jingyun Wang; Lijia An
We have previously evaluated the neuroprotective effect of catalpol on aging mice induced by d-galactose, in which catalpol treatment ameliorated cognition deficits and attenuated oxidative damage in mice brain. To thoroughly elucidate the anti-aging effects of catalpol, the liver and spleen antioxidative systems and energy metabolism in senescent mice induced by d-galactose have been studied. Except control group, mice were subcutaneously injected with d-galactose (150mgkg(-1)body weight) for 6 weeks. Meanwhile, drug group mice were treated with catalpol (2.5, 5, 10mgkg(-1)body weight) and piracetam (300mgkg(-1)body weight) for the last 2 weeks. The activities of endogenous antioxidants and the level of glutathione (GSH) and lipid peroxide in the liver and spleen were assayed. Compared to control group, model group mice had significantly lower spleen index (spleen weight/body weight), lower level of GSH, lower activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX), higher level of malondialdehyde (MDA) in the liver and spleen. However, catalpol administration markedly reversed these effects of senescence induced by d-galactose. Simultaneously, catalpol noticeably elevated the decreased activities of lactate dehydrogenase (LDH), glutamine synthetase (GS), Na(+)-K(+)-ATPase, Ca(2+)-Mg(2+)-ATPase and decreased the elevated activity of creatine kinase (CK) in mice liver or spleen. These results implied that the anti-aging effects of catalpol were achieved at least partly by promoting endogenous antioxidant enzyme activities and normalizing energy disturbance. Catalpol may be a potential anti-aging agent and worth testing for further preclinical study aimed for senescence or neurodegenerative diseases such as Alzheimers and Parkinsons diseases.
Food and Chemical Toxicology | 2008
Xiuli Zhang; Lijia An; Yongming Bao; Jingyun Wang; Bo Jiang
The neuroprotective effects of catalpol, an iridoid glycoside isolated from the fresh rehmannia roots, on the behavior and brain energy metabolism in senescent mice induced by d-galactose were assessed. Except control group, mice were subcutaneously injected with d-galactose (150 mg/kg body weight) for 6 weeks. From the fifth week, drug group mice were treated with catalpol (2.5, 5, 10 mg/kg body weight) and piracetam (300 mg/kg body weight) for the last 2 weeks. Behavioral changes including open field test and passive avoidance were examined after drug administration. To determine the brain damage, pathological alterations were measured by hematoxylin and eosin (HE) staining. The activities of lactate dehydrogenase (LDH), glutathione S-transferase (GSH-ST), glutamine synthetase (GS), creatine kinase (CK) in brain cortex and hippocampus were determined using different biochemical methods. Consistent with the cognition deficits, the activities of GSH-ST, GS and CK decreased while the activity of LDH increased in aging mice brain. Administration of catalpol for 2-weeks not only ameliorated cognition deficit, but also reversed the biochemical markers mentioned above and reduced the histological lesions in mouse brain. These results suggest that catalpol has protective effects on memory damage and energy metabolism failure in aging model mice and is worth testing for further preclinical study aimed for senescence or neurodegenerative diseases such as Alzheimers disease (AD) and Parkinsons disease (PD).
Applied Biochemistry and Biotechnology | 2009
Wei Gao; Yongming Bao; Yang Liu; Xiuli Zhang; Jingyun Wang; Lijia An
A new thermophilic inulinase-producing strain, which grows optimally at 60xa0°C, was isolated from soil samples with medium containing inulin as a sole carbon source. It was identified as a Bacillus smithii by analysis of 16s rDNA. Maximum inulinase yield of 135.2xa0IU/ml was achieved with medium pH7.0, containing inulin 2.0%, (NH4)H2PO4 0.5%, yeast extract 0.5%, at 50xa0°C 200xa0rpm shaker for 72-h incubation. The purified inulinase from the extracellular extract of B. smithii T7 shows endoinulinolytic activity. The optimum pH for this endoinulinase is 4.5 and stable at pH range of 4.0–8.0. The optimum temperature for enzyme activity was 70xa0°C, the half life of the endoinulinase is 9xa0h and 2.5xa0h at 70xa0°C and 80xa0°C respectively. Comparatively lower Michaelis–Menten constant (4.17xa0mM) and higher maximum reaction velocity (833xa0IU/mg protein) demonstrate the endoinulinase’s greater affinity for inulin substrate. These findings are significant for its potential industrial application.
Phytotherapy Research | 2009
Zhibo Li; Jingyun Wang; Jun Yang; Xiuli Zhang; Lijia An; Yongming Bao
p‐Hydroxymethoxybenzobijuglone (HMBBJ), a new quinone compound isolated from Juglans mandshurica (by bioassay‐guided fractionation), showed cytotoxic activity in the gastric carcinoma cell line BGC823. The growth of BGC823 cells was inhibited as demonstrated by MTT assay and several cellular characteristic changes, such as cell shrinkage, chromatin condensation and apoptotic body formation with programmed cell death. Flow cytometry analysis revealed that the BGC823 cell cycle was arrested at G2/M phase by HMBBJ, and the apoptotic rate of BGC823 cells increased with respect to HMBBJ in a dose‐dependent manner. HMBBJ also activated caspase‐3, decreased the expression of Bcl‐2 and caused a decrease in the mitochondrial membrane potential (ΔΨm). These findings suggest that HMBBJ could significantly induce apoptosis in BGC823 cells and should be considered as a potential candidate for a chemotherapeutic drug against cancer. Copyright
Preparative Biochemistry & Biotechnology | 2003
Yang D; Jingyun Wang; Yongming Bao; Lijia An
Abstract The activity of alkaline phosphatase (ALP, EC 3.1.3.1.) was found in seaweeds, including five kinds of green alga, eighteen kinds of red alga, and six kinds of brown alga, collected from the seaside of Dalian in China. The enzyme was purified 1230-fold from Ulva pertusa Kjellm. It had a specific activity of 48.6 U/mg protein and was proven to be homogeneous by SDS-PAGE with a subunit molecular mass of 19.5 kDa. The activity of ALP peaked at pH 9.8, and was completely inhibited by DTT and partly by NBS. The Michaelis-Menten constant Km and the maximum reaction velocity Vmax, at pH 9.8 and 37°C were 0.950 mM and 5.00 µM/min, respectively.
Journal of Enzyme Inhibition | 2001
Yang D; Jingyun Wang; Xiaojun Peng; Lijia An
Ulva pertusa Kjellm alkaline phosphatase (EC 3.3.3.1) is a metalloenzyme, the active site of which contains a tight cluster of two zinc ions and one magnesium ion. The kinetic theory described by Tsou of the substrate reaction during irreversible inhibition of enzyme activity has been employed to study the kinetics of the course of inactivation of the enzyme by EDTA. The kinetics of the substrate reaction at different concentrations of the substrate p-nitrophenyl phosphate (PNPP) and inactivator EDTA indicated a complexing mechanism for inactivation by, and substrate competition with, EDTA at the active site. The inactivation kinetics are single phasic, showing that the initial formation of an enzyme-EDTA complex is a relative rapid reaction, following by a slow inactivation step that probably involves a conformational change of the enzyme. The presence of Zn2+ apparently stabilizes an active-site conformation required for enzyme activity.
Phytomedicine | 2007
Zhibo Li; Jingyun Wang; Bo Jiang; Xiuli Zhang; Lijia An; Yongming Bao
World Journal of Microbiology & Biotechnology | 2009
Ling Zhao; Yongming Bao; Jingyun Wang; Boshi Liu; Lijia An