Jinhan Wang
Peking Union Medical College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jinhan Wang.
BioMed Research International | 2014
Liwen Wang; Jinhan Wang; Lianying Fang; Zuliang Zheng; Dexian Zhi; Suying Wang; Shiming Li; Chi-Tang Ho; Hui Zhao
Citrus is a kind of common fruit and contains multiple beneficial nutrients for human beings. Flavonoids, as a class of plant secondary metabolites, exist in citrus fruits abundantly. Due to their broad range of pharmacological properties, citrus flavonoids have gained increased attention. Accumulative in vitro and in vivo studies indicate protective effects of polymethoxyflavones (PMFs) against the occurrence of cancer. PMFs inhibit carcinogenesis by mechanisms like blocking the metastasis cascade, inhibition of cancer cell mobility in circulatory systems, proapoptosis, and antiangiogenesis. This review systematically summarized anticarcinogenic effect of citrus flavonoids in cancer therapy, together with the underlying important molecular mechanisms, in purpose of further exploring more effective use of citrus peel flavonoids.
Environment International | 2018
Yan Wang; Xiaohui Sun; Lianying Fang; Keqiu Li; Ping Yang; Liqing Du; Kaihua Ji; Jinhan Wang; Qiang Liu; Chang Xu; Guang Li; John P. Giesy; Markus Hecker
BACKGROUND Managing and recycling electronic waste (e-waste), while useful and necessary, has resulted in significant contamination of several environments in China. The area around Tianjin, China has become one of the worlds largest e-waste disposal centers, where electronics are processed by manually disassembly or burning, which can result in serious exposure of workers to a multitude of toxicants. OBJECTIVE The present study assessed potential genomic damage in workers involved in recycling e-waste. METHODS To detect cytogenetic and DNA damage, chromosomal aberrations (CA), cytokinesis blocking micronucleus (CBMN) and the comet assay were performed. Concentrations of some trace elements, markers of oxidative stress and polychlorinated biphenyls (PCBs) in whole blood or serum were measured, and relationships among the markers described above, age, and duration of exposure were analyzed. The profiles of expression of genes in lymphocytes in peripheral blood were assessed to determine the status of the regulation of genes involved in genome stability. RESULTS Concentrations of 28 PCB congeners in the whole blood of the exposed group were significantly (P<0.001) greater than those in the control individuals. Frequency of CA (8.01%) and CBMN (26.3‰) in lymphocytes and the level of DNA damage in the lymphocytes and spermatozoa of the exposed men were also significantly (P<0.0001) greater than those of the controls. There were significant relationships between CA, CBMN, DNA damage and duration of exposure. Concentrations of malondialdehyde (MDA) and lead (Pb) in the blood serum were significantly greater, but activities of superoxide dismutase (SOD), glutathione (GSH) and concentrations of calcium (Ca) and magnesium (Mg) were lower in the serum of the exposed men. MDA, Pb, Ca and Mg were associated with the duration of exposure to handling e-waste. In males involved in handling of e-waste, there were 13 genes - ATM, ATR, ABL1, CHEK1, CHEK2, GADD45A, CDK7, GTSE1, OGG1, DDB1, PRKDC, XRCC1 and CCNH - for which expression of mRNA was up-regulated and 7 genes - BRCA1, GTF2H1, SEMA4A, MRE11A, MUTYH, PNKP and RAD50 - for which the expression of mRNA was down-regulated. CONCLUSIONS A strong correlation between indicators of damage of DNA, which could result in instability of the genome, and duration of processing e-waste was observed. If proper procedures are not followed, there are significant risks to the health of the individuals involved in such activities.
Journal of Agricultural and Food Chemistry | 2017
Jinhan Wang; Liwen Wang; Chi-Tang Ho; Kunsheng Zhang; Qiang Liu; Hui Zhao
Nonsmall cell lung cancer (NSCLC) is the predominant type of lung cancer. Patients with NSCLC show high mortality rates because of failure to clean up cancer stem cells (CSCs). The anticancer activity of phytochemical garcinol has been identified in various cancer cell models. However, the effect of garcinol on NSCLC cell lines is still lacking. Of the NSCLC cell lines we tested, A549 cells were the most sensitive to garcinol. Interestingly, Aldehyde Dehydrogenase 1 Family Member A1 (ALDH1A1) was preferentially expressed in A549 cells and downregulated by the addition of garcinol. We also found that garcinol enriched DNA damage-inducible transcript 3 (DDIT3) and then altered DDIT3-CCAAT-enhancer-binding proteins beta (C/EBPβ) interaction resulting in a decreased binding of C/EBPβ to the endogenous ALDH1A1 promoter. Furthermore, garcinols inhibition of ALDH1A1 was identified in a xenograft mice model. Garcinol repressed ALDH1A1 transcription in A549 cells through alterations in the interaction between DDIT3 and C/EBPβ. Garcinol could be a potential dietary phytochemical candidate for NSCLCs patients whose tumors harbored high ALDH1A1 expression.
Tumor Biology | 2018
Jing Ma; Wei Gong; Su Liu; Qian Li; Mengzheng Guo; Jinhan Wang; Suying Wang; Naiyao Chen; Yafei Wang; Qiang Liu; Hui Zhao
The oncogenic microRNA-21 contributes to the pathogenesis of multiple myeloma. Ibrutinib (also referred to as PCI-32765), an inhibitor of Bruton’s tyrosine kinase, while its effects on multiple myeloma have not been well described. Here, we show that microRNA-21 is an oncogenic marker closely linked with progression of multiple myeloma. Moreover, ibrutinib attenuates microRNA-21 expression in multiple myeloma cells by inhibiting nuclear factor-κB and signal transducer and activator of transcription 3 signaling pathways. Taken together, our results suggest that ibrutinib is a promising potential treatment for multiple myeloma. Further investigation of mechanisms of ibrutinib function in multiple myeloma will be necessary to evaluate its use as a novel multiple myeloma treatment.
Data in Brief | 2018
Yanan Du; Yan Wang; Liqing Du; Chang Xu; Kaihua Ji; Jinhan Wang; Qiang Liu
In this data article, 146 villagers (exposed group) were randomly selected from the workers who involved in the e-wastes recycling directly as a daily job in Tianjin. Control group, including 121 villagers, came from another town without e-waste disposal sites. Chromosomal aberrations (CA) and cytokinesis blocking micronucleus (CBMN) were performed to detect the cytogenetic effect for each subject. DNA damage was detected using comet assay; the DNA percentage in the comet tail (TDNA%), tail moment (TM), and Olive tail moment (OTM) were recorded to describe DNA damage to lymphocytes and spermatozoa. Routine semen analysis, spermatozoa motility and morphology were analyzed. The RT2Profiler PCR array was used to measure levels of expression of 84 genes related to quality of DNA. It showed significant relationships between CA, CBMN, DNA damage and exposure time in exposure subjects. The alteration of sperm motility rate, abnormality rate and total sperm counts had association with exposure time and age.
Cellular Physiology and Biochemistry | 2018
Qianying Lu; Wei Gong; Jinhan Wang; Kaihua Ji; Yan Wang; Chang Xu; Yang Liu; Ningning He; Liqing Du; Qiang Liu
Background/Aims: Circular RNAs (circRNAs) make up a large class of non-coding RNAs and play important roles in a variety of diseases, including nervous system diseases and cancers. The intestinal epithelium is sensitive to ionizing radiation, radiotherapy of abdominal or pelvic tumors or nuclear accident exposure can lead to high radiation toxicity, which can result in radiation-induced intestinal injury. The goal of this present study was to analyze the potential roles of circRNAs in radiation-induced intestinal injury. Methods: Mice were divided into two groups: control group and irradiated group. Irradiated group was 3.5 days after 14Gy abdominal irradiation (ABI) group. We started with RNA-seq of circRNA changes in mouse jejuna after radiation and validated by RT-PCR in the following experimental. miRNAs targeted mRNAs were predicted using proprietary software based on target scan and Miranda. The network of circRNA-miRNA-mRNA was illustrated by cytoscape software. Results: 2751 circRNAs were detected in the two groups. At day 3.5 post-radiation, 42 and 48 circRNAs were found to be significantly upregulated and downregulated, respectively, compared to the control (p≤0.05, Fold Change ≥2). Further, the altered expression of 10 circRNAs (chr18: 35610871-35613502+, chr15: 95864225-95894541+, chr3: 96041338-96042928-, chr5: 64096979-64108263+, chr19: 16705875-16710941-, chr5: 134491893-134500149-, chr19: 42562552-42564341+, chr5: 32640331-32664400+, chr3: 72958113-72960367- and chr8: 79343654-79372364-) were verified by RT-PCR. Compared the miRNA-targeted mRNAs with our mRNAs sequencing data, we found 14 upregulated circRNA-targeted mRNAs were also unregulated and 22 downregulated circRNAs-targeted mRNAs were also downregulated. Gene ontology and KEGG pathway analyses indicated the predicted genes were mainly involved in the MAPK signaling pathway. Conclusions: This study reveals that expression of circRNAs was altered in the jejuna of mice post-irradiation and provides a resource for the study of circRNAs in radiation-induced intestinal injury and repair.
Journal of Cellular and Molecular Medicine | 2018
Qianying Lu; Wei Gong; Jinhan Wang; Kaihua Ji; Xiaohui Sun; Chang Xu; Liqing Du; Yan Wang; Qiang Liu
LncRNAs have been reported to play an important role in various diseases. However, their role in the radiation‐induced intestinal injury is unknown. The goal of the present study was to analyse the potential mechanistic role of lncRNAs in the radiation‐induced intestinal injury. Mice were divided into two groups: Control (non‐irradiated) and irradiated. Irradiated mice were administered 14 Gy of abdominal irradiation (ABI) and were assessed 3.5 days after irradiation. Changes to the jejuna of ABI mice were analysed using RNA‐Seq for alterations to both lncRNA and mRNA. These results were validated using qRT‐PCR. LncRNAs targets were predicted based on analysis of lncRNAs‐miRNAs‐mRNAs interaction. 29 007 lncRNAs and 17 142 mRNAs were detected in the two groups. At 3.5 days post‐irradiation, 91 lncRNAs and 57 lncRNAs were significantly up‐ and downregulated respectively. Similarly, 752 mRNAs and 400 mRNAs were significantly up‐ and downregulated respectively. qRT‐PCR was used to verify the altered expression of four lncRNAs (ENSMUST00000173070, AK157361, AK083183, AK038898) and four mRNAs (Mboat1, Nek10, Ccl24, Cyp2c55). Gene ontology and KEGG pathway analyses indicated the predicted genes were mainly involved in the VEGF signalling pathway. This study reveals that the expression of lncRNAs was altered in the jejuna of mice post‐irradiation. Moreover, it provides a resource for the study of lncRNAs in the radiation‐induced intestinal injury.
Environment International | 2018
Yanan Du; Yan Wang; Liqing Du; Chang Xu; Kaihua Ji; Jinhan Wang; Qiang Liu
Abstract In this data article, 146 villagers (exposed group) were randomly selected from the workers who involved in the e-wastes recycling directly as a daily job in Tianjin. Control group, including 121 villagers, came from another town without e-waste disposal sites. Chromosomal aberrations (CA) and cytokinesis blocking micronucleus (CBMN) were performed to detect the cytogenetic effect for each subject. DNA damage was detected using comet assay; the DNA percentage in the comet tail (TDNA%), tail moment (TM), and Olive tail moment (OTM) were recorded to describe DNA damage to lymphocytes and spermatozoa. Routine semen analysis, spermatozoa motility and morphology were analyzed. The RT 2 Profiler PCR array was used to measure levels of expression of 84 genes related to quality of DNA. It showed significant relationships between CA, CBMN, DNA damage and exposure time in exposure subjects. The alteration of sperm motility rate, abnormality rate and total sperm counts had association with exposure time and age.
Cellular Physiology and Biochemistry | 2018
Kaihua Ji; Xiaohui Sun; Yang Liu; Liqing Du; Yan Wang; Ningning He; Jinhan Wang; Chang Xu; Qiang Liu
Background/Aims: SirT1, a conserved NAD+-dependent deacetylase, has been implicated in modulating cell survival and stress responses, and it appears to play an important role in tumorigenesis and cancer resistance to chemoradiotherapy. The mechanism of SirT1 in cancer chemoradiotherapy remains to be further elucidated, which could provide potential targets for cancer therapy. Methods: We performed colony formation, immunofluorescence microscopy, flow cytometry, RNA interference, and western blotting assays to determine whether SirT1 regulates radiation sensitization and which mechanisms and/or pathways it takes in lung cancer cell lines A549 and H460. Results: Initially, the expression of SirT1 was found to be negatively correlated with radiosensitivity in lung cancer cell lines A549 and H460. RNA interference with siSirT1 against SirT1 specifically reduced SirT1 expression and induced radiosensitivity both in A549 and H460 cell lines. In contrast, the radiosensitivity was significantly reduced once SirT1 was activated by resveratrol. Immunofluorescence assay and apoptosis analysis indicated that the effect of SirT1 on the radiosensitivity observed in the A549 and H460 cell lines was mainly achieved by regulating DNA damage repair and apoptosis processes. Furthermore, the expression of SirT1 negatively modulated the expression of apoptosis-related protein NF-κB and its downstream regulator of Smac. Conclusion: Our results indicate that SirT1 regulates apoptosis and radiation sensitization in lung cancer cell lines A549 and H460 via the SirT1/NF-κB/Smac pathway.
Cell Death and Disease | 2018
Ningning He; Yangyang Kong; Xudan Lei; Yang Liu; Jinhan Wang; Chang Xu; Yan Wang; Liqing Du; Kaihua Ji; Qin Wang; Zongjin Li; Qiang Liu
The acquisition of radioresistance by breast cancer cells during radiotherapy may lead to cancer recurrence and poor survival. Signal transducer and activator of transcription 3 (Stat3) is activated in breast cancer cells and, therefore, may be an effective target for overcoming therapeutic resistance. Mesenchymal stem cells (MSCs) have been investigated for use in cancer treatment. Here, we investigated the potential of MSC conditioned medium (MSC-CM) in sensitizing breast cancer to radiotherapy. It was found that MSC-CM could inhibit the level of activated Stat3, suppress cancer growth, and exhibit synergetic effects with radiation treatment in vitro and in vivo. Furthermore, MSC-CM reduced the ALDH-positive cancer stem cells (CSCs) population, modulated several potential stem cell markers, and decreased tumor migration, as well as metastasis. These results demonstrate that MSC-CM suppresses breast cancer cells growth and sensitizes cancer cells to radiotherapy through inhibition of the Stat3 signaling pathway, thus, providing a novel strategy for breast cancer therapy by overcoming radioresistance.