Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jinhe Bai is active.

Publication


Featured researches published by Jinhe Bai.


Sensors | 2011

Electronic Noses and Tongues: Applications for the Food and Pharmaceutical Industries

Elizabeth A. Baldwin; Jinhe Bai; Anne Plotto; Sharon Dea

The electronic nose (e-nose) is designed to crudely mimic the mammalian nose in that most contain sensors that non-selectively interact with odor molecules to produce some sort of signal that is then sent to a computer that uses multivariate statistics to determine patterns in the data. This pattern recognition is used to determine that one sample is similar or different from another based on headspace volatiles. There are different types of e-nose sensors including organic polymers, metal oxides, quartz crystal microbalance and even gas-chromatography (GC) or combined with mass spectroscopy (MS) can be used in a non-selective manner using chemical mass or patterns from a short GC column as an e-nose or “Z” nose. The electronic tongue reacts similarly to non-volatile compounds in a liquid. This review will concentrate on applications of e-nose and e-tongue technology for edible products and pharmaceutical uses.


Journal of Agricultural and Food Chemistry | 2010

Effect of Liberibacter Infection (Huanglongbing Disease) of Citrus on Orange Fruit Physiology and Fruit/Fruit Juice Quality: Chemical and Physical Analyses

Elizabeth A. Baldwin; Anne Plotto; John A. Manthey; Greg McCollum; Jinhe Bai; Mike Irey; Randall G. Cameron; Gary A. Luzio

More than 90% of oranges in Florida are processed, and since Huanglongbing (HLB) disease has been rumored to affect fruit flavor, chemical and physical analyses were conducted on fruit and juice from healthy (Las -) and diseased (Las +) trees on three juice processing varieties over two seasons, and in some cases several harvests. Fruit, both asymptomatic and symptomatic for the disease, were used, and fresh squeezed and processed/pasteurized juices were evaluated. Fruit and juice characteristics measured included color, size, solids, acids, sugars, aroma volatiles, ascorbic acid, secondary metabolites, pectin, pectin-demethylating enzymes, and juice cloud. Results showed that asymptomatic fruit from symptomatic trees were similar to healthy fruit for many of the quality factors measured, but that juice from asymptomatic and especially symptomatic fruits were often higher in the bitter compounds limonin and nomilin. However, values were generally below reported taste threshold levels, and only symptomatic fruit seemed likely to cause flavor problems. There was variation due to harvest date, which was often greater than that due to disease. It is likely that the detrimental flavor attributes of symptomatic fruit (which often drop off the tree) will be largely diluted in commercial juice blends that include juice from fruit of several varieties, locations, and seasons.


Journal of Food Science | 2014

Effects of chitosan-essential oil coatings on safety and quality of fresh blueberries.

Xiuxiu Sun; Jan Narciso; Zhe Wang; Christopher Ference; Jinhe Bai; Kequan Zhou

UNLABELLED Chitosan coating plus different essential oils was developed and applied to fresh blueberries in order to find more natural treatments to preserve fresh fruit quality and safety during postharvest storage. Studies were 1st performed in vitro where wild-type Escherichia coli and Penicillium digitatum were grown in suitable media, and then subjected to 6 essential oils. Three compounds, carvacrol (CAR), cinnamaldehyde (CIN), and trans-cinnamaldehyde (ECIN) had high antimicrobial capacity and were selected for an in vivo study for postharvest storage of blueberries. The selected essential oils, 0.5% each, were added into a chitosan solution and coated on fresh blueberries. After storage at 5, 10, and 20 °C for various days, fruit firmness and microbial populations were evaluated. The chitosan coating substantially decreased bacteria and yeasts/molds on the fruit, and all 3 essential oils added to the antimicrobial activities. Further dosage experiments showed that the antimicrobial activity remained even when lowering CAR concentration to 0.1% and ECIN to 0.2%. Chitosan, CAR, and ECIN also maintained fruit firmness. Our results suggest that chitosan coatings containing essential oils are effective in extending the shelf life of fresh blueberries. PRACTICAL APPLICATION Blueberries are high-value fruit with strong antioxidant capacity and other health-promoting benefits. However, microbial food safety is an increasing concern, and decay and softening limits their storability. A combination of ≥ 0.1% CAR or ≥ 0.2% ECIN with a chitosan coating effectively reduced softening of fresh berries and decay by inhibiting microbial growth.


Journal of Agricultural and Food Chemistry | 2014

Pharmacokinetics of flavanone glycosides after ingestion of single doses of fresh-squeezed orange juice versus commercially processed orange juice in healthy humans.

Jacqueline Queiroz da Silveira; Thais Borges Cesar; John A. Manthey; Elizabeth A. Baldwin; Jinhe Bai; Smita Raithore

Orange juice is a rich source of flavonoids considered beneficial to cardiovascular health in humans. The objective of this study was to analyze the pharmacokinetics of the main flavanone glycosides, hesperidin and narirutin, in humans after the consumption of two styles of orange juice, fresh-squeezed (FOJ) and commercially processed (POJ), differing in their amounts of soluble and insoluble forms of these compounds. Healthy human subjects consumed 11.5 mL/kg body weight of FOJ, and after an interval of 30 days, consumed the same quantity of POJ. The results showed that there were no significant differences in the Tmax of the pharmacokinetic curves for the metabolites of hesperidin and narirutin following the consumption of the two styles of juices, and corrected for differences in doses in the POJ and FOJ, there were also no significant differences in the AUC and Cmax values and percent absorption of these compounds.


Food and Bioprocess Technology | 2016

Recent Advance in Aromatic Volatile Research in Tomato Fruit: The Metabolisms and Regulations

Libin Wang; Elizabeth A. Baldwin; Jinhe Bai

Aroma, an essential characteristic of tomato fruit, plays an important role in determining the perception and acceptability of tomato products by consumers. During tomato fruit ripening, associated with color changes from green to red involving the conversion of chloroplasts to chromoplasts are changes of aromatic volatile profiles. Although the biosynthetic pathways for some aromatic volatiles have been established in tomato fruit recently, our knowledge of regulatory mechanisms is still rudimentary. On the other hand, many internal and external factors modify volatile metabolism in tomato fruit. This review first summarizes the current knowledge of expression patterns and biosynthetic pathways of aromatic volatiles in tomato fruit along with the role of ethylene in their biosynthesis. The impact of internal and pre- and postharvest external factors on volatile composition is then discussed. This review will provide critical information for research on tomato aromatic volatiles and their manipulation.


Journal of Food Protection | 2014

Antimicrobial activity of controlled-Release chlorine dioxide gas on fresh blueberries

Xiuxiu Sun; Jinhe Bai; Christopher Ference; Zhe Wang; Yifan Zhang; Jan Narciso; Kequan Zhou

The effect of chlorine dioxide (ClO2) gas on the safety and quality of blueberries was studied. In vitro studies revealed that both ClO2 gas fumigation and ClO2 direct contact in water killed food pathogen bacterium Escherichia coli and fruit decay pathogen fungus Colletotrichum acutatum. In vivo studies were conducted using noninoculated berries and berries inoculated with postharvest decay and foodborne pathogens. Berries were inoculated with either E. coli (5.2 log CFU/g) or C. acutatum (3.9 log CFU/g). Inoculated fruit were dried for 2 h at room temperature in a climate-controlled laboratory and packed in perforated commercial clamshells, with or without ClO2 pads, and stored at 10°C for up to 9 days. The effects of ClO2 on microbial populations and fruit firmness were monitored during storage. In the inoculation experiment, treatment with ClO2 reduced populations of E. coli and C. acutatum by 2.2 to 3.3 and 1.3 to 2.0 log CFU/g, respectively. For the noninoculated blueberries, the initial total aerobic bacteria count and the yeast and mold count were 4.2 and 4.1 log CFU/g, respectively. ClO2 treatment reduced total aerobic bacteria count and yeast and mold count by 1.5 to 1.8 and 1.3 to 1.7 log CFU/g, respectively. The firmness of both inoculated and noninoculated blueberries was maintained by ClO2 treatment. Thus, controlled-release ClO2 gas fumigation technology shows promise as an effective and practical antimicrobial agent in commercial clamshell packaging of blueberry and other fruits.


Foods | 2016

Changes in Volatile and Non-Volatile Flavor Chemicals of “Valencia” Orange Juice over the Harvest Seasons

Jinhe Bai; Elizabeth A. Baldwin; Greg McCollum; Anne Plotto; John A. Manthey; Wilbur Widmer; Gary A. Luzio; Randall G. Cameron

Florida “Valencia” oranges have a wide harvest window, covering four months after first reaching the commercial maturity. However, the influence of harvest time on juice flavor chemicals is not well documented, with the exception of sugars and acids. Therefore, we investigated the major flavor chemicals, volatile (aroma), non-volatile (taste) and mouth feel attributes, in the two harvest seasons (March to June in 2007 and February to May in 2012). Bitter limonoid compounds, limonin and nomilin, decreased gradually. Out of a total of 94 volatiles, 32 increased, 47 peaked mid to late season, and 15 decreased. Juice insoluble solids and pectin content increased over the season; however, pectin methylesterase activity remained unchanged. Fruit harvested in the earlier months had lower flavor quality. Juice from later harvests had a higher sugar/acid ratio with less bitterness, while, many important aroma compounds occurred at the highest concentrations in the middle to late season, but occurred at lower concentrations at the end of the season. The results provide information to the orange juice processing industry for selection of optimal harvest time and for setting of precise blending strategy.


Sensors | 2015

Electronic Tongue Response to Chemicals in Orange Juice that Change Concentration in Relation to Harvest Maturity and Citrus Greening or Huanglongbing (HLB) Disease.

Smita Raithore; Jinhe Bai; Anne Plotto; John A. Manthey; Mike Irey; Elizabeth A. Baldwin

In an earlier study, an electronic tongue system (e-tongue) has been used to differentiate between orange juice made from healthy fruit and from fruit affected by the citrus greening or Huanglongbing (HLB) disease. This study investigated the reaction of an e-tongue system to the main chemicals in orange juice that impact flavor and health benefits and are also impacted by HLB. Orange juice was spiked with sucrose (0.2–5.0 g/100 mL), citric acid (0.1%–3.0% g/100 mL) and potassium chloride (0.1–3.0 g/100 mL) as well as the secondary metabolites nomilin (1–30 µg/mL), limonin (1–30 µg/mL), limonin glucoside (30–200 µg/mL), hesperidin (30–400 µg/mL) and hesperetin (30–400 µg/mL). Performance of Alpha MOS sensor sets #1 (pharmaceutical) and #5 (food) were compared for the same samples, with sensor set #1 generally giving better separation than sensor set #5 for sucrose, sensor set #5 giving better separation for nomilin and limonin, both sets being efficient at separating citric acid, potassium chloride, hesperitin and limonin glucoside, and neither set discriminating hesperidin efficiently. Orange juice made from fruit over the harvest season and from fruit harvested from healthy or HLB-affected trees were separated by harvest maturity, disease state and disease severity.


BMC Plant Biology | 2015

Proteomic and metabolomic analyses provide insight into production of volatile and non-volatile flavor components in mandarin hybrid fruit

Qibin Yu; Anne Plotto; Elizabeth A. Baldwin; Jinhe Bai; Ming Huang; Yuan Yu; Harvinder S Dhaliwal; Frederick G. Gmitter

BackgroundAlthough many of the volatile constituents of flavor and aroma in citrus have been identified, the knowledge of molecular mechanisms and regulation of volatile production are very limited. Our aim was to understand mechanisms of flavor volatile production and regulation in mandarin fruit.ResultFruits of two mandarin hybrids, Temple and Murcott with contrasting volatile and non- volatile profiles, were collected at three developmental stages. A combination of methods, including the isobaric tags for relative and absolute quantification (iTRAQ), quantitative real-time polymerase chain reaction, gas chromatography, and high-performance liquid chromatography, was used to identify proteins, measure gene expression levels, volatiles, sugars, organic acids and carotenoids. Two thirds of differentially expressed proteins were identified in the pathways of glycolysis, citric acid cycle, amino acid, sugar and starch metabolism. An enzyme encoding valencene synthase gene (Cstps1) was more abundant in Temple than in Murcott. Valencene accounted for 9.4% of total volatile content in Temple, whereas no valencene was detected in Murcott fruit. Murcott expression of Cstps1 is severely reduced.ConclusionWe showed that the diversion of valencene and other sesquiterpenes into the terpenoid pathway together with high production of apocarotenoid volatiles might have resulted in the lower concentration of carotenoids in Temple fruit.


Journal of Agricultural and Food Chemistry | 2013

Extraction of DNA from orange juice, and detection of bacterium Candidatus Liberibacter asiaticus by real-time PCR.

Jinhe Bai; Elizabeth A. Baldwin; Hui-Ling Liao; Wei Zhao; Igor Kostenyuk; Jacqueline K. Burns; Mike Irey

Orange juice processed from Huanglongbing (HLB) affected fruit is often associated with bitter taste and/or off-flavor. HLB disease in Florida is associated with Candidatus Liberibacter asiaticus (CLas), a phloem-limited bacterium. The current standard to confirm CLas for citrus trees is to take samples from midribs of leaves, which are rich in phloem tissues, and use a quantitative real-time polymerase chain reaction (qPCR) test to detect the 16S rDNA gene of CLas. It is extremely difficult to detect CLas in orange juice because of the low CLas population, high sugar and pectin concentration, low pH, and possible existence of an inhibitor to DNA amplification. The objective of this research was to improve extraction of DNA from orange juice and detection of CLas by qPCR. Homogenization using a sonicator increased DNA yield by 86% in comparison to mortar and pestle extraction. It is difficult to separate DNA from pectin; however, DNA was successfully extracted by treating the juice with pectinase. Application of an elution column successfully removed the unidentified inhibitor to DNA amplification. This work provided a protocol to extract DNA from whole orange juice and detect CLas in HLB-affected fruit.

Collaboration


Dive into the Jinhe Bai's collaboration.

Top Co-Authors

Avatar

Elizabeth A. Baldwin

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Anne Plotto

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

John A. Manthey

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Jan Narciso

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Xiuxiu Sun

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Wei Zhao

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Smita Raithore

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Greg McCollum

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Libin Wang

United States Department of Agriculture

View shared research outputs
Researchain Logo
Decentralizing Knowledge