Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jinhua Tang is active.

Publication


Featured researches published by Jinhua Tang.


PLOS ONE | 2013

Blocking the Class I Histone Deacetylase Ameliorates Renal Fibrosis and Inhibits Renal Fibroblast Activation via Modulating TGF-Beta and EGFR Signaling

Na Liu; Song He; Li Ma; Murugavel Ponnusamy; Jinhua Tang; Evelyn Tolbert; George Bayliss; Ting C. Zhao; Haidong Yan; Shougang Zhuang

Background Histone deacetylase (HDAC) inhibitors are promising anti-fibrosis drugs; however, nonselective inhibition of class I and class II HDACs does not allow a detailed elucidation of the individual HDAC functions in renal fibrosis. In this study, we investigated the effect of MS-275, a selective class I HDAC inhibitor, on the development of renal fibrosis in a murine model of unilateral ureteral obstruction (UUO) and activation of cultured renal interstitial fibroblasts. Methods/Findings The UUO model was established by ligation of the left ureter and the contralateral kidney was used as a control. At seven days after UUO injury, kidney developed fibrosis as indicated by deposition of collagen fibrils and increased expression of collagen I, fibronectin and alpha-smooth muscle actin (alpha-SMA). Administration of MS-275 inhibited all these fibrotic responses and suppressed UUO-induced production of transforming growth factor-beta1 (TGF-beta), increased expression of TGF-beta receptor I, and phosphorylation of Smad-3. MS-275 was also effective in suppressing phosphorylation and expression of epidermal growth factor receptor (EGFR) and its downstream signaling molecule, signal transducer and activator of transcription-3. Moreover, class I HDAC inhibition reduced the number of renal tubular cells arrested in the G2/M phase of the cell cycle, a cellular event associated with TGF-beta1overproduction. In cultured renal interstitial fibroblasts, MS-275 treatment inhibited TGF-beta induced phosphorylation of Smad-3, differentiation of renal fibroblasts to myofibroblasts and proliferation of myofibroblasts. Conclusions and Significance These results demonstrate that class I HDACs are critically involved in renal fibrogenesis and renal fibroblast activation through modulating TGF-beta and EGFR signaling and suggest that blockade of class I HDAC may be a useful treatment for renal fibrosis.


American Journal of Pathology | 2013

Sustained activation of EGFR triggers renal fibrogenesis after acute kidney injury.

Jinhua Tang; Na Liu; Evelyn Tolbert; Murugavel Ponnusamy; Li Ma; Rujun Gong; George Bayliss; Haidong Yan; Shougang Zhuang

Severe acute kidney injury (AKI) is frequently accompanied by maladaptive repair and renal fibrogenesis; however, the molecular mechanisms that mediate these acute and chronic consequences of AKI remain poorly understood. In this study, we examined the role of epidermal growth factor receptor (EGFR) in these processes using waved-2 (Wa-2) mice, which have reduced EGFR activity, and their wild-type (WT) littermates after renal ischemia. Renal EGFR phosphorylation was induced within 2 days after ischemia, increased over time, and remained elevated at 28 days in WT mice, but this was diminished in Wa-2 mice. At the early stage of postischemia (2 days), Wa-2 mice developed more severe acute renal tubular damage with less reparative responses as indicated by enhanced tubular cell apoptosis, and reduced dedifferentiation and proliferation as compared to WT animals. At the late stage of postischemia (28 days), Wa-2 mice exhibited a less severe renal interstitial fibrosis as shown by reduced activation/proliferation of renal myofibroblasts and decreased deposition of extracellular matrix proteins. EGFR activation also contributed to cell cycle arrest at the G2/M phase, a cellular event associated with production of profibrogenetic factors, in the injured kidney. Collectively, these results indicate that severe AKI results in sustained activation of EGFR, which is required for reparative response of renal tubular cells initially, but eventually leads to fibrogenesis.


Kidney International | 2013

Role of epidermal growth factor receptor in acute and chronic kidney injury

Jinhua Tang; Na Liu; Shougang Zhuang

Epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase. Its activation results in beneficial or detrimental consequences, depending on the particular setting. Earlier studies in the animal model of acute kidney injury showed that EGFR activation promotes renal tubular cell proliferation. Activation of EGFR by its exogenous ligands, like EGF, can enhance recovery of renal function and structure following acute kidney injury. However, recent studies indicated that EGFR activation also contributes to development and progression of renal diseases in animal models of obstructive nephropathy, diabetic nephropathy, hypertensive nephropathy, and glomerulonephritis through mechanisms involved in activation of renal interstitial fibroblasts, induction of tubular atrophy, overproduction of inflammatory factors or/and promotion of glomerular and vascular injury. This review highlights the actions and mechanisms of EGFR in a variety of acute and chronic kidney injuries.


International Journal of Nephrology | 2012

Inflammation and oxidative stress in obesity-related glomerulopathy.

Jinhua Tang; Haidong Yan; Shougang Zhuang

Obesity-related glomerulopathy is an increasing cause of end-stage renal disease. Obesity has been considered a state of chronic low-grade systemic inflammation and chronic oxidative stress. Augmented inflammation in adipose and kidney tissues promotes the progression of kidney damage in obesity. Adipose tissue, which is accumulated in obesity, is a key endocrine organ that produces multiple biologically active molecules, including leptin, adiponectin, resistin, that affect inflammation, and subsequent deregulation of cell function in renal glomeruli that leads to pathological changes. Oxidative stress is also associated with obesity-related renal diseases and may trigger the initiation or progression of renal damage in obesity. In this paper, we focus on inflammation and oxidative stress in the progression of obesity-related glomerulopathy and possible interventions to prevent kidney injury in obesity.


American Journal of Physiology-cell Physiology | 2015

P2X7 receptor inhibition protects against ischemic acute kidney injury in mice

Yanli Yan; Jianwen Bai; Xiaoxu Zhou; Jinhua Tang; Chunming Jiang; Evelyn Tolbert; George Bayliss; Rujun Gong; Ting C. Zhao; Shougang Zhuang

Activation of the purinergic P2X7 receptor (P2X7R) has been associated with the development of experimental nephritis and diabetic and hypertensive nephropathy. However, its role in acute kidney injury (AKI) remains unknown. In this study, we examined the effects of P2X7R inhibition in a murine model of ischemia-reperfusion (I/R)-induced AKI using A438079, a selective inhibitor of P2X7R. At 24 h after I/R, mice developed renal dysfunction and renal tubular damage, which was accompanied by elevated expression of P2X7R. Early administration of A438079 immediately or 6 h after the onset of reperfusion protected against renal dysfunction and attenuated kidney damage whereas delayed administration of A438079 at 24 h after restoration of perfusion had no protective effects. The protective actions of A438079 were associated with inhibition of renal tubule injury and cell death and suppression of renal expression of monocyte chemotactic protein-1 and regulated upon expression normal T cell expressed and secreted (RANTES). Moreover, I/R injury led to an increase in phosphorylation (activation) of extracellular signal-regulated kinases 1/2 in the kidney; treatment with A438079 diminished this response. Collectively, these results indicate that early P2X7R inhibition is effective against renal tubule injury and proinflammatory response after I/R injury and suggest that targeting P2X7R may be a promising therapeutic strategy for treatment of AKI.


Journal of Pharmacology and Experimental Therapeutics | 2014

Blocking Sirtuin 1 and 2 Inhibits Renal Interstitial Fibroblast Activation and Attenuates Renal Interstitial Fibrosis in Obstructive Nephropathy

Murugavel Ponnusamy; Xiaoxu Zhou; Yanli Yan; Jinhua Tang; Evelyn Tolbert; Ting C. Zhao; Rujun Gong; Shougang Zhuang

Our recent studies revealed that blocking class I/II histone deacetylases (HDACs) inhibits renal interstitial fibroblast activation and proliferation and alleviates development of renal fibrosis. However, the effect of class III HDAC, particularly sirtuin 1 and 2 (SIRT1 and SIRT2), inhibition on renal fibrogenesis remains elusive. Here, we demonstrate that both SIRT1 and SIRT2 were expressed in cultured renal interstitial fibroblasts (NRK-49F). Exposure of NRK-49F to sirtinol, a selective inhibitor of SIRT1/2, or EX527 (6-chloro-2,3,4,9-tetrahydro-1H-carbazole-1-carboxamide), an inhibitor for SIRT1, resulted in reduced expression of fibroblast activation markers (α-smooth muscle actin, fibronectin, and collagen I) as well as proliferation markers (proliferating cell nuclear antigen, cyclin D1, cyclin E) in dose- and time-dependent manners. Treatment with a SIRT2 inhibitor, AGK2 (2-cyano-3-[5-(2,5-dichlorophenyl)-2-furanyl]-N-5-quinolinyl-2-propenamide), also dose- and time-dependently inhibited renal fibroblast activation and, to a lesser extent, cell proliferation. Furthermore, silencing of either SIRT1 or SIRT2 by small interfering RNA exhibited similar inhibitory effects. In a mouse model of obstructive nephropathy, administration of sirtinol attenuated deposition of collagen fibrils as well as reduced expression of α-smooth muscle actin, collagen I, and fibronectin in the injured kidney. SIRT1/2 inhibition–mediated antifibrotic effects are associated with dephosphorylation of epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor-β (PDGFRβ), and signal transducer and activator of transcription 3. Thus, SIRT1/2 activity may contribute to renal fibroblast activation and proliferation as well as renal fibrogenesis through activation of at least EGFR and PDGFRβ signaling. Blocking SIRT1/2 activation may have therapeutic potential for the treatment of chronic kidney disease.


Kidney International | 2016

Src inhibition blocks renal interstitial fibroblast activation and ameliorates renal fibrosis.

Yanli Yan; Li Ma; Xiaoxu Zhou; Murugavel Ponnusamy; Jinhua Tang; Michelle A. Zhuang; Evelyn Tolbert; Georgia Bayliss; Jianwen Bai; Shougang Zhuang

Increased Src activity has been associated with the pathogenesis of renal tumors and some glomerular diseases, but its role in renal interstitial fibrosis remains elusive. To evaluate this, cultured renal interstitial fibroblasts (NRK-49F) were treated with PP1, a selective inhibitor of Src. This resulted in decreased expression of α-smooth muscle actin, fibronectin, and collagen I in response to serum, angiotension II, or transforming growth factor-β1 (TGF-β1). Silencing Src with siRNA also inhibited expression of those proteins. Furthermore, inhibition of Src activity blocked renal fibroblast proliferation. In a murine model of renal interstitial fibrosis induced by unilateral ureteral obstruction, the active form of Src (phopsho-Src Tyr416) was upregulated in both renal interstitial fibroblasts and renal tubular cells of the fibrotic kidney. Its inactivation reduced renal fibroblast activation and attenuated extracellular matrix protein deposition. Src inhibition also suppressed activation of TGF-β1 signaling, activation of the epidermal growth factor receptor and STAT3, and reduced the number of renal epithelial cells arrested at the G2/M phase of the cell cycle after ureteral obstruction. Thus, Src is an important mediator of renal interstitial fibroblast activation and renal fibrosis, and suggest that Src is a potential therapeutic target for treatment of chronic renal fibrosis.


American Journal of Physiology-renal Physiology | 2014

Class I HDAC activity is required for renal protection and regeneration after acute kidney injury

Jinhua Tang; Yanli Yan; Ting C. Zhao; Rujun Gong; George Bayliss; Haidong Yan; Shougang Zhuang

Activation of histone deacetylases (HDACs) is required for renal epithelial cell proliferation and kidney development. However, their role in renal tubular cell survival and regeneration after acute kidney injury (AKI) remains unclear. In this study, we demonstrated that all class I HDAC isoforms (1, 2, 3, and 8) were expressed in the renal epithelial cells of the mouse kidney. Inhibition of class I HDACs with MS-275, a highly selective inhibitor, resulted in more severe tubular injury in the mouse model of AKI induced by folic acid or rhabdomyolysis, as indicated by worsening renal dysfunction, increased neutrophil gelatinase-associated lipocalin expression, and enhanced apoptosis and caspase-3 activation. Blocking class I HDAC activity also impaired renal regeneration as evidenced by decreased expression of renal Pax-2, vimentin, and proliferating cell nuclear antigen. Injury to the kidney is accompanied by increased phosphorylation of epidermal growth factor receptor (EGFR), signal transducers and activators of transcription 3 (STAT3), and Akt. Inhibition of class I HDACs suppressed EGFR phosphorylation as well as reduced its expression. MS-275 was also effective in inhibiting STAT3 and Akt phosphorylation, but this treatment did not affect their expression levels. Taken together, these data suggest that the class I HDAC activity contributes to renal protection and functional recovery and is required for renal regeneration after AKI. Furthermore, renal EGFR signaling is subject to regulation by this class of HDACs.


American Journal of Physiology-renal Physiology | 2013

Class I histone deacetylase activity is required for proliferation of renal epithelial cells

Jinhua Tang; Yanli Yan; Ting C. Zhao; George Bayliss; Haidong Yan; Shougang Zhuang

The process of renal regeneration after acute kidney injury is thought to recapitulate renal development, and proliferation of renal proximal tubular cells (RPTCs) is a critical step in the regenerative response. Recent studies indicate that class I histone deacetylases (HDACs) are required for embryonic kidney gene expression, growth, and differentiation. The role and underlying mechanisms of class I HDAC activation in RPTC proliferation, however, remain unclear. In this study, we used cultured RPTCs to examine this issue since four class I HDAC isoforms (1, 2, 3, and 8) are abundantly expressed in this cell type. Blocking class I HDAC activity with a highly selective inhibitor, MS-275, induced global histone H3 hyperacetylation, reduced RPTC proliferation, and diminished expression of cyclin D1 and proliferating cell nuclear antigen. Silencing HDAC1, 3, or 8 with small interfering RNA resulted in similar biological effects. Activation of epidermal growth factor receptor (EGFR) and signal transducers and activators of transcription 3 (STAT3) was required for RPTC proliferation, and STAT3 functioned downstream of EGFR. Treatment with MS-275 or knockdown of HDAC1, 3, or 8 suppressed EGFR expression and phosphorylation, and silencing HDAC1 and 3 also reduced STAT3 phosphorylation. However, HDAC2 downregulation did not affect RPTC proliferation and phosphorylation of EGFR and STAT3. Collectively, these data reveal a critical role of class I HDACs in mediating proliferation of renal epithelial cells through activation of the EGFR/STAT3 signaling pathway.


Oncotarget | 2017

Pharmacological inhibition of Src kinase protects against acute kidney injury in a murine model of renal ischemia/reperfusion

Chongxiang Xiong; Xiujuan Zang; Xiaoxu Zhou; Lirong Liu; Monica V. Masucci; Jinhua Tang; Xuezhu Li; Na Liu; George Bayliss; Ting C. Zhao; Shougang Zhuang

Activation of Src kinase has been implicated in the pathogenesis of acute brain, liver, and lung injury. However, the role of Src in acute kidney injury (AKI) remains unestablished. To address this, we evaluated the effects of Src inhibition on renal dysfunction and pathological changes in a murine model of AKI induced by ischemia/reperfusion (I/R). I/R injury to the kidney resulted in increased Src phosphorylation at tyrosine 416 (activation). Administration of PP1, a highly selective Src inhibitor, blocked Src phosphorylation, improved renal function and ameliorated renal pathological damage. PP1 treatment also suppressed renal expression of neutrophil gelatinase-associated lipocalin and reduced apoptosis in the injured kidney. Moreover, Src inhibition prevented downregulation of several adherens and tight junction proteins, including E-cadherin, ZO-1, and claudins-1/−4 in the kidney after I/R injury as well as in cultured renal proximal tubular cells following oxidative stress. Finally, PP1 inhibited I/R–induced renal expression of matrix metalloproteinase-2 and -9, phosphorylation of extracellular signal–regulated kinases1/2, signal transducer and activator of transcription-3, and nuclear factor-κB, and the infiltration of macrophages into the kidney. These data indicate that Src is a pivotal mediator of renal epithelial injury and that its inhibition may have a therapeutic potential to treat AKI.

Collaboration


Dive into the Jinhua Tang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge