Jinhua Wen
Peking University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jinhua Wen.
Stem Cells | 2009
Qikuan Hu; Lirong Zhang; Jinhua Wen; Shuling Wang; Meiyu Li; Ruopeng Feng; Xiaolong Yang; Lingsong Li
The transcriptional factor Sox2 and epidermal growth factor receptor (Egfr)‐mediated signaling are both required for self‐renewal of neural precursor cells (NPCs). However, the mechanism by which these factors coordinately regulate this process is largely unknown. Here we show that Egfr‐mediated signaling promotes Sox2 expression, which in turn binds to the Egfr promoter and directly upregulates Egfr expression. Knockdown of Sox2 by RNA interference downregulates Egfr expression and attenuates colony formation of NPCs, whereas overexpression of Sox2 elevates Egfr expression and promotes NPC self‐renewal. Moreover, the effect of Sox2 on NPC self‐renewal is completely inhibited by AG1478, a specific inhibitor for Egfr; it is also inhibited by LY294002 and U0126, selective antagonists for phosphatidylinositol 3‐kinase (PI3K) and extracellular signal‐regulated kinase (Erk1/2), respectively. Collectively, we conclude that NPC self‐renewal is enhanced through a novel cellular feedback loop with mutual regulation of Egfr and Sox2. STEM CELLS 2010;28:279–286
Biochemical Journal | 2013
Ruopeng Feng; Shixin Zhou; Yinan Liu; Daijun Song; Zhilin Luan; Yang Li; Na Tang; Jinhua Wen; Lingsong Li
The transcription factor Sox2 [SRY (sex-determining region Y)-box 2] is essential for the regulation of self-renewal and homoeostasis of NSCs (neural stem cells) during brain development. However, the downstream targets of Sox2 and its underlying molecular mechanism are largely unknown. In the present study, we found that Sox2 directly up-regulates the expression of survivin, which inhibits the mitochondria-dependent apoptotic pathway in NSCs. Although overexpression of Sox2 elevates survivin expression, knockdown of Sox2 results in a decrease in survivin expression, thereby initiating the mitochondria-dependent apoptosis related to caspase 9 activation. Furthermore, cell apoptosis owing to knockdown of Sox2 can be rescued by ectopically expressing survivin in NSCs as well as in the mouse brain, as demonstrated by an in utero-injection approach. In short, we have found a novel Sox2/survivin pathway that regulates NSC survival and homoeostasis, thus revealing a new mechanism of brain development, neurological degeneration and such aging-related disorders.
Journal of Cellular and Molecular Medicine | 2014
Na Tang; Yanxia Zhao; Ruopeng Feng; Yinan Liu; Shuling Wang; Wanguo Wei; Qiang Ding; Michael Songzhu An; Jinhua Wen; Lingsong Li
Lung fibrosis is characterized by vascular leakage and myofibroblast recruitment, and both phenomena are mediated by lysophosphatidic acid (LPA) via its type‐1 receptor (LPA1). Following lung damage, the accumulated myofibroblasts activate and secrete excessive extracellular matrix (ECM), and form fibrotic foci. Studies have shown that bone marrow‐derived cells are an important source of myofibroblasts in the fibrotic organ. However, the type of cells in the bone marrow contributing predominantly to the myofibroblasts and the involvement of LPA‐LPA1 signalling in this is yet unclear. Using a bleomycin‐induced mouse lung‐fibrosis model with an enhanced green fluorescent protein (EGFP) transgenic mouse bone marrow replacement, we first demonstrated that bone marrow derived‐mesenchymal stem cells (BMSCs) migrated markedly to the bleomycin‐injured lung. The migrated BMSC contributed significantly to α‐smooth muscle actin (α‐SMA)‐positive myofibroblasts. By transplantation of GFP‐labelled human BMSC (hBMSC) or EGFP transgenic mouse BMSC (mBMSC), we further showed that BMSC might be involved in lung fibrosis in severe combined immune deficiency (SCID)/Beige mice induced by bleomycin. In addition, using quantitative‐RT‐PCR, western blot, Sircol collagen assay and migration assay, we determined the underlying mechanism was LPA‐induced BMSC differentiation into myofibroblast and the secretion of ECM via LPA1. By employing a novel LPA1 antagonist, Antalpa1, we then showed that Antalpa1 could attenuate lung fibrosis by inhibiting both BMSC differentiation into myofibroblast and the secretion of ECM. Collectively, the above findings not only further validate LPA1 as a drug target in the treatment of pulmonary fibrosis but also elucidate a novel pathway in which BMSCs contribute to the pathologic process.
Neuroreport | 2008
Jinhua Wen; Qikuan Hu; Meiyu Li; Shuling Wang; Lirong Zhang; Yuanyuan Chen; Lingsong Li
Pax6 is a key regulator in the neuronal fate determination as well as the proliferation of neural stem cells, but the mechanisms are still unknown. Our study shows that Pax6 regulate the proliferation of neural progenitor cells of cortical subventricular zone, through direct modulation of the Sox2 expression during the late developmental stage in mice. We found a dramatic decrease in the number of Sox2+ neural progenitor cells in the subventricular zone of E18.5 Pax6−/− mice. We confirmed that Pax6 could bind to the Sox2 promoter by chromatin immunoprecipitation assay and activate Sox2 expression by a luciferase reporter gene assay. Moreover, neural progenitors isolated from the Pax6−/− embryos showed a decreased neurosphere formation as well as proliferation.
Stem Cells and Development | 2013
Yang Li; Xiaoni Li; Hongxi Zhao; Ruopeng Feng; Xiaoyan Zhang; Dapeng Tai; Guangyu An; Jinhua Wen; Jichun Tan
The technology to reprogram human somatic cells back to pluripotency allows the production of patient-specific induced pluripotent stem cells (iPSCs) and holds a great promise for regenerative medicine. Choosing the most suitable cell type for induction and reducing the risk of viral transgene activation, especially oncogene activation, are important for iPSC research. To date, human dermal fibroblasts (HDFs) are the most frequent cell source used for iPSC generation, but they have several limitations. An invasive skin biopsy must be performed to obtain HDFs, and HDFs must be cultured for a prolonged period before they can be used for experiments. Thus, in an effort to develop a suitable source for iPSC studies to avoid the limitations mentioned above, we have here identified stromal cells derived from menstrual blood (MenSCs) as suitable candidates. In the present study, we found that MenSCs can be reprogrammed to pluripotent status by doxycycline-inducible lentiviral transduction of OCT4, SOX2, and KLF4. Additionally, we found that MenSCs have a significantly higher reprogramming efficiency than HDFs. The combination of OCT4 and SOX2 is sufficient to reprogram MenSCs into iPSCs without the use of c-MYC or KLF4. The resulting MenSC-iPSCs showed the same characteristics as human embryonic stem cells with regard to morphology, pluripotent markers, gene expression, and the epigenetic status of pluripotent-cell-specific genes. These cells were able to differentiate into various cell types of all 3 germ layers both in vitro and in vivo. Therefore, MenSCs may be a preferred candidate for generation of iPSCs.
BioMed Research International | 2013
Yang Li; Zhixin Li; Shixin Zhou; Jinhua Wen; Bin Geng; Jichun Yang; Qinghua Cui
Increasing studies have shown that microRNA (miRNA) stability plays important roles in physiology. However, the global picture of miRNA stability remains largely unknown. Here, we had analyzed genome-wide miRNA stability across 10 diverse cell types using miRNA arrays. We found that miRNA stability shows high dynamics and diversity both within individual cells and across cell types. Strikingly, we observed a negative correlation between miRNA stability and miRNA expression level, which is different from current findings on other biological molecules such as proteins and mRNAs that show positive and not negative correlations between stability and expression level. This finding indicates that miRNA has a distinct action mode, which we called “rapid production, rapid turnover; slow production, slow turnover.” This mode further suggests that high expression miRNAs normally degrade fast and may endow the cell with special properties that facilitate cellular status-transition. Moreover, we revealed that the stability of miRNAs is affected by cohorts of factors that include miRNA targets, transcription factors, nucleotide content, evolution, associated disease, and environmental factors. Together, our results provided an extensive description of the global landscape, dynamics, and distinct mode of human miRNA stability, which provide help in investigating their functions in physiology and pathophysiology.
PLOS ONE | 2012
Ting Liu; Yanxia Zhao; Na Tang; Ruopeng Feng; Xiaolong Yang; Nicole Lu; Jinhua Wen; Lingsong Li
Background Heterozygous paired box6 (Pax6) mutations lead to abnormal glucose metabolism in mice older than 6 months as well as in human beings. Our previous study found that Pax6 deficiency caused down-expression of prohormone convertase 1/3 (Pcsk1), resulting in defective proinsulin processing. As a protein cleaving enzyme, in addition to its expression, the activity of PC1/3 is closely related to its function. We therefore hypothesize that Pax6 mutation alters the activity of PC1/3, which affects proinsulin processing. Methodology/Principal Findings Using quantitative RT-PCR, western blot and enzyme assay, we found that PC1/3 C-terminal cleavage and its activity were compromised in Pax6 R266Stop mutant mice, and the expression of Pcsk1n, a potent inhibitor of PC1/3, was elevated by Pax6 deficiency in the mutant mice and MIN6 cells. We confirmed the effect of proSAAS, the protein encoded by Pcsk1n, on PC1/3 C-terminal cleavage and its activity by Pcsk1n RNAi in MIN6 cells. Furthermore, by luciferase-reporter analysis, chromatin immunoprecipitation, and electrophoretic mobility shift assay, we revealed that Pax6 bound to Pcsk1n promoter and directly down-regulated its expression. Finally, by co-transfecting Pax6 siRNA with Pcsk1n siRNA, we showed that Pax6 knock-down inhibited proinsulin processing and that this effect could be rescued by proSAAS down-regulation. These findings confirm that Pax6 regulates proinsulin processing partially through proSAAS-mediated PC1/3 processing and activity. Conclusions/Significance Collectively, the above experiments demonstrate that Pax6 can directly down-regulate Pcsk1n expression, which negatively affects PC1/3 C-terminal cleavage and activity and subsequently participates in proinsulin processing. We identified proSAAS as a novel down-regulated target of Pax6 in the regulation of glucose metabolism. This study also provides a complete molecular mechanism for the Pax6 deficiency-caused diabetes.
Neuroreport | 2011
Haitao Jia; Hong Tao; Ruopeng Feng; Meiyu Li; Jie bai; Tao Sun; Jinhua Wen; Qikuan Hu
Neural stem/progenitor cells transit from fibroblast growth factor-responsive to epidermal growth factor (EGF)-responsive stem cells in the subventricular zone (SVZ). Here, we provide evidences that Pax6 plays a crucial role in the regulation of the EGF-responsive stem cell pool of the SVZ. Using Pax6 homozygous mutant mice (E18.5d), we found that the neurospheres were formed less than that from the wild-type mice, and the expression of EGF receptor in these neurospheres is downregulated very much. The amount of EGF-responsive cells in the mutant dorsal cortex SVZ (E18.5d) was also decreased from 16.8 (wild) to 4.5% (mutant), by flow cytometry method. Immunostaining of the cortex showed a downregulation of EGF receptor expression. All these results suggest that Pax6 regulate the EGF-responsive stem cells in the SVZ.
Stem Cells and Development | 2014
Jing Fang; Ting Zhang; Yinan Liu; Yang Li; Shixin Zhou; Daijun Song; Yanxia Zhao; Ruopeng Feng; Xiaoyan Zhang; Lingsong Li; Jinhua Wen
PAX6-null mice exhibit defects in multiple organs leading to neonatal lethality, but the mechanism by which this occurs has not yet fully elucidated. In this study, we generated induced pluripotent stem cells (iPSCs) from Pax6-mutant mice and investigated the effect of PAX6 on cell fate during embryoid body (EB) formation. We found that PAX6 promotes cell migration by directly downregulating miR-124, which is important for the fate transition of migratory cells during gastrulation of embryonic stem (ES) cells. Although several downstream targets of miR-124 have been reported, little is known regarding the upstream regulation of miR-124. When we observed EB formation of iPSCs from Pax6-mutant mice, we found that higher levels of miR-124 in Pax6 homozygous EBs (Homo-EBs) inhibited cell migration, whereas inhibition of miR-124 in Homo-EBs rescued the migratory phenotypes associated with PAX6 deficiency. Further, we found that PAX6 binds to the promoter regions of the miR-124-3 gene and directly represses its expression. Therefore, we propose a novel PAX6-miR-124 pathway that controls ES cell migration. Our findings may provide important information for studies on ES cell differentiation and embryonic development.
Scientific Reports | 2017
Shixin Zhou; Yinan Liu; Yumin Ma; Xiaoyan Zhang; Yang Li; Jinhua Wen
Human embryonic stem cells (hESCs) are a unique population of cells defined by their capacity for self-renewal and pluripotency. Here, we identified a previously uncharacterized gene in hESCs, C9ORF135, which is sharply downregulated during gastrulation and gametogenesis, along with the pluripotency factors OCT4, SOX2, and NANOG. Human ESCs express two C9ORF135 isoforms, the longer of which encodes a membrane-associated protein, as determined by immunostaining and western blotting of fractionated cell lysates. Moreover, the results of chromatin immunoprecipitation (ChIP), mass spectrometry (MS), and co-immunoprecipitation (co-IP) analyses demonstrated that C9ORF135 expression is regulated by OCT4 and SOX2 and that C9ORF135 interacts with non-muscle myosin IIA and myosin IIB. Collectively, these data indicated that C9ORF135 encodes a membrane-associated protein that may serve as a surface marker for undifferentiated hESCs.