Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jinjiang Fan is active.

Publication


Featured researches published by Jinjiang Fan.


Nature Reviews Drug Discovery | 2010

Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders.

Rainer Rupprecht; Vassilios Papadopoulos; Gerhard Rammes; Thomas C. Baghai; Jinjiang Fan; Nagaraju Akula; Ghislaine Groyer; David J. Adams; Michael Schumacher

The translocator protein (18 kDa) (TSPO) is localized primarily in the outer mitochondrial membrane of steroid-synthesizing cells, including those in the central and peripheral nervous system. One of its main functions is the transport of the substrate cholesterol into mitochondria, a prerequisite for steroid synthesis. TSPO expression may constitute a biomarker of brain inflammation and reactive gliosis that could be monitored by using TSPO ligands as neuroimaging agents. Moreover, initial clinical trials have indicated that TSPO ligands might be valuable in the treatment of neurological and psychiatric disorders. This Review focuses on the biology and pathophysiology of TSPO and the potential of currently available TSPO ligands for the diagnosis and treatment of neurological and psychiatric disorders.


Biochimica et Biophysica Acta | 2009

Cholesterol transport in steroid biosynthesis: Role of protein-protein interactions and implications in disease states

Malena B. Rone; Jinjiang Fan; Vassilios Papadopoulos

The transfer of cholesterol from the outer to the inner mitochondrial membrane is the rate-limiting step in hormone-induced steroid formation. To ensure that this step is achieved efficiently, free cholesterol must accumulate in excess at the outer mitochondrial membrane and then be transferred to the inner membrane. This is accomplished through a series of steps that involve various intracellular organelles, including lysosomes and lipid droplets, and proteins such as the translocator protein (18 kDa, TSPO) and steroidogenic acute regulatory (StAR) proteins. TSPO, previously known as the peripheral-type benzodiazepine receptor, is a high-affinity drug- and cholesterol-binding mitochondrial protein. StAR is a hormone-induced mitochondria-targeted protein that has been shown to initiate cholesterol transfer into mitochondria. Through the assistance of proteins such as the cAMP-dependent protein kinase regulatory subunit Ialpha (PKA-RIalpha) and the PKA-RIalpha- and TSPO-associated acyl-coenzyme A binding domain containing 3 (ACBD3) protein, PAP7, cholesterol is transferred to and docked at the outer mitochondrial membrane. The TSPO-dependent import of StAR into mitochondria, and the association of TSPO with the outer/inner mitochondrial membrane contact sites, drives the intramitochondrial cholesterol transfer and subsequent steroid formation. The focus of this review is on (i) the intracellular pathways and protein-protein interactions involved in cholesterol transport and steroid biosynthesis and (ii) the roles and interactions of these proteins in endocrine pathologies and neurological diseases where steroid synthesis plays a critical role.


Molecular Endocrinology | 2012

Identification of a Dynamic Mitochondrial Protein Complex Driving Cholesterol Import, Trafficking, and Metabolism to Steroid Hormones

Malena B. Rone; Andrew Midzak; Leeyah Issop; Georges Rammouz; Sathvika Jagannathan; Jinjiang Fan; Xiaoying Ye; Josip Blonder; Timothy D. Veenstra; Vassilios Papadopoulos

Steroid hormones are critical for organismal development and health. The rate-limiting step in steroidogenesis is the transport of cholesterol from the outer mitochondrial membrane (OMM) to the cytochrome P450 enzyme CYP11A1 in the inner mitochondrial membrane (IMM). Cholesterol transfer occurs through a complex termed the transduceosome, in which cytosolic steroidogenic acute regulatory protein interacts with OMM proteins translocator protein and voltage-dependent anion channel (VDAC) to assist with the transfer of cholesterol to OMM. It has been proposed that cholesterol transfer from OMM to IMM occurs at specialized contact sites bridging the two membranes composed of VDAC and IMM adenine nucleotide translocase (ANT). Blue native PAGE of Leydig cell mitochondria identified two protein complexes that were able to bind cholesterol at 66- and 800-kDa. Immunoblot and mass spectrometry analyses revealed that the 800-kDa complex contained the OMM translocator protein (18-kDa) and VDAC along with IMM CYP11A1, ATPase family AAA domain-containing protein 3A (ATAD3A), and optic atrophy type 1 proteins, but not ANT. Knockdown of ATAD3A, but not ANT or optic atrophy type 1, in Leydig cells resulted in a significant decrease in hormone-induced, but not 22R-hydroxycholesterol-supported, steroid production. Using a 22-phenoxazonoxy-5-cholene-3-beta-ol CYP11A1-specific probe, we further demonstrated that the 800-kDa complex offers the microenvironment needed for CYP11A1 activity. Addition of steroidogenic acute regulatory protein to the complex mobilized the cholesterol bound at the 800-kDa complex, leading to increased steroid formation. These results identify a bioactive, multimeric protein complex spanning the OMM and IMM unit that is responsible for the hormone-induced import, segregation, targeting, and metabolism of cholesterol.


Biology of Reproduction | 2011

Stem Leydig Cell Differentiation: Gene Expression During Development of the Adult Rat Population of Leydig Cells

Erin Stanley; Daniel S. Johnston; Jinjiang Fan; Vassilios Papadopoulos; Haolin Chen; Ren Shan Ge; Barry R. Zirkin; Scott A. Jelinsky

ABSTRACT Leydig cells are the testosterone-producing cells in the adult male. Adult Leydig cells (ALCs) develop from stem Leydig cells (SLCs) through at least two intermediate cells, progenitor Leydig cells (PLCs) and immature Leydig cells (ILCs). Microarray gene expression was used to identify the transcriptional changes that occur with the differentiation of SLCs to PLCs and, thus, with the entry of SLCs into the Leydig cell lineage; to comprehensively examine differentiation through the development of ALCs; and to relate the pattern of gene expression in SLCs to that in a well-established stem cell, bone marrow stem cells (BSCs). We show that the pattern of gene expression by SLCs was more similar to the expression by BSCs, an established stem cell outside the male reproductive tract, than to any of the cells in the Leydig cell developmental lineage. These results indicated that the SLCs have many of the molecular characteristics of other stem cells. Pathway analysis indicated that development of Leydig cells from SLCs to PLCs was associated with decreased expression of genes related to adhesion and increased expression of genes related to steroidogenesis. Gene expression changes between PLCs and ILCs and between ILCs and ALCs were relatively minimal, suggesting that these cells are highly similar. In contrast, gene expression changes between SLCs and ALCs were quite distinct.


PLOS ONE | 2013

Evolutionary Origin of the Mitochondrial Cholesterol Transport Machinery Reveals a Universal Mechanism of Steroid Hormone Biosynthesis in Animals

Jinjiang Fan; Vassilios Papadopoulos

Steroidogenesis begins with the transport of cholesterol from intracellular stores into mitochondria via a series of protein-protein interactions involving cytosolic and mitochondrial proteins located at both the outer and inner mitochondrial membranes. In adrenal glands and gonads, this process is accelerated by hormones, leading to the production of high levels of steroids that control tissue development and function. A hormone-induced multiprotein complex, the transduceosome, was recently identified, and is composed of cytosolic and outer mitochondrial membrane proteins that control the rate of cholesterol entry into the outer mitochondrial membrane. More recent studies unveiled the steroidogenic metabolon, a bioactive, multimeric protein complex that spans the outer-inner mitochondrial membranes and is responsible for hormone-induced import, segregation, targeting, and metabolism of cholesterol by cytochrome P450 family 11 subfamily A polypeptide 1 (CYP11A1) in the inner mitochondrial membrane. The availability of genome information allowed us to systematically explore the evolutionary origin of the proteins involved in the mitochondrial cholesterol transport machinery (transduceosome, steroidogenic metabolon, and signaling proteins), trace the original archetype, and predict their biological functions by molecular phylogenetic and functional divergence analyses, protein homology modeling and molecular docking. Although most members of these complexes have a history of gene duplication and functional divergence during evolution, phylogenomic analysis revealed that all vertebrates have the same functional complex members, suggesting a common mechanism in the first step of steroidogenesis. An archetype of the complex was found in invertebrates. The data presented herein suggest that the cholesterol transport machinery is responsible for steroidogenesis among all vertebrates and is evolutionarily conserved throughout the entire animal kingdom.


Biology of Reproduction | 2013

Aging and Luteinizing Hormone Effects on Reactive Oxygen Species Production and DNA Damage in Rat Leydig Cells

Matthew C. Beattie; Haolin Chen; Jinjiang Fan; Vassilios Papadopoulos; Paul S. Miller; Barry R. Zirkin

ABSTRACT We observed previously that after long-term suppression of luteinizing hormone (LH) and thus of Leydig cell steroidogenesis, restimulation of the Leydig cells by LH resulted in significantly higher testosterone production than by age-matched cells from control rats. These studies suggest that stimulation over time may elicit harmful effects on the steroidogenic machinery, perhaps through alteration of the intracellular oxidant-to-antioxidant balance. Herein we compared the effects of LH stimulation on stress response genes, formation of intracellular reactive oxygen species (ROS), and ROS-induced damage to ROS-susceptible macromolecules (DNA) in young and in aged cells. Microarray analysis indicated that LH stimulation resulted in significant increases in expression of genes associated with stress response and antiapoptotic pathways. Short-term LH treatment of primary Leydig cells isolated from young rats resulted in transiently increased ROS levels compared to controls. Aged Leydig cells also showed increased ROS soon after LH stimulation. However, in contrast to the young cells, ROS production peaked later and the time to recovery was increased. In both young and aged cells, treatment with LH resulted in increased levels of DNA damage but significantly more so in the aged cells. DNA damage levels in response to LH and the levels of intracellular ROS were highly correlated. Taken together, these results indicate that LH stimulation causes increased ROS production by young and aged Leydig cells and that while DNA damage occurs in cells of both ages, there is greater damage in the aged cells.


Journal of Neuroendocrinology | 2018

Translocator protein (18 kDa): an update on its function in steroidogenesis

Vassilios Papadopoulos; Jinjiang Fan; Barry R. Zirkin

Translocator protein (18 kDa) (TSPO) is a ubiquitous mitochondrial protein. Studies of its responses to drug and endogenous ligands have shown TSPO to be involved either directly or indirectly in numerous biological functions, including mitochondrial cholesterol transport and steroid hormone biosynthesis, porphyrin transport and heme synthesis, apoptosis, cell proliferation, and anion transport. Localised to the outer mitochondrial membrane of steroidogenic cells, TSPO has been shown to associate with cytosolic and mitochondrial proteins as part of a large multiprotein complex involved in mitochondrial cholesterol transport, the rate‐limiting step in steroidogenesis. There is general agreement as to the structure and pharmacology of TSPO. Stimulation of TSPO has been shown to have therapeutic use as anxiolytics by inducing allopregnanolone production in the brain, and also potentially for re‐establishing androgen levels in hypogonadal ageing animals. Until recently, there has been general agreement regarding the role of TSPO in steroidogenesis. However, recent studies involving genetic depletion of TSPO in mice have created controversy about the role of this protein in steroid and heme synthesis. We review the data on the structure and function of TSPO, as well as the recent results obtained using various genetic animal models. Taken together, these studies suggest that TSPO is a unique mitochondrial pharmacological target for diseases that involve increased mitochondrial activity, including steroidogenesis. Although there is no known mammalian species that lacks TSPO, it is likely that, because of the importance of this ancient protein in evolution and mitochondrial function, redundant mechanisms may exist to replace it under circumstances when it is removed.


PLOS ONE | 2011

Hormone-dependent expression of a steroidogenic acute regulatory protein natural antisense transcript in MA-10 mouse tumor Leydig cells.

Ana Fernanda Castillo; Jinjiang Fan; Vassilios Papadopoulos; Ernesto J. Podestá

Cholesterol transport is essential for many physiological processes, including steroidogenesis. In steroidogenic cells hormone-induced cholesterol transport is controlled by a protein complex that includes steroidogenic acute regulatory protein (StAR). Star is expressed as 3.5-, 2.8-, and 1.6-kb transcripts that differ only in their 3′-untranslated regions. Because these transcripts share the same promoter, mRNA stability may be involved in their differential regulation and expression. Recently, the identification of natural antisense transcripts (NATs) has added another level of regulation to eukaryotic gene expression. Here we identified a new NAT that is complementary to the spliced Star mRNA sequence. Using 5′ and 3′ RACE, strand-specific RT-PCR, and ribonuclease protection assays, we demonstrated that Star NAT is expressed in MA-10 Leydig cells and steroidogenic murine tissues. Furthermore, we established that human chorionic gonadotropin stimulates Star NAT expression via cAMP. Our results show that sense-antisense Star RNAs may be coordinately regulated since they are co-expressed in MA-10 cells. Overexpression of Star NAT had a differential effect on the expression of the different Star sense transcripts following cAMP stimulation. Meanwhile, the levels of StAR protein and progesterone production were downregulated in the presence of Star NAT. Our data identify antisense transcription as an additional mechanism involved in the regulation of steroid biosynthesis.


Biochemical Journal | 2017

TSPO mutations in rats and a human polymorphism impair the rate of steroid synthesis

David R. Owen; Jinjiang Fan; Enrico Campioli; Sathvika Venugopal; Andrew Midzak; Edward Daly; Aline Harlay; Leeyah Issop; Vincenzo Libri; Dimitra Kalogiannopoulou; Eduardo Oliver; Enrique Gallego-Colon; Alessandro Colasanti; Les Huson; Ilan Rabiner; Puvan Suppiah; Charles Essagian; Paul M. Matthews; Vassilios Papadopoulos

The 18u2005kDa translocator protein (TSPO) is a ubiquitous conserved outer mitochondrial membrane protein implicated in numerous cell and tissue functions, including steroid hormone biosynthesis, respiration, cell proliferation, and apoptosis. TSPO binds with high affinity to cholesterol and numerous compounds, is expressed at high levels in steroid-synthesizing tissues, and mediates cholesterol import into mitochondria, which is the rate-limiting step in steroid formation. In humans, the rs6971 polymorphism on the TSPO gene leads to an amino acid substitution in the fifth transmembrane loop of the protein, which is where the cholesterol-binding domain of TSPO is located, and this polymorphism has been associated with anxiety-related disorders. However, recent knockout mouse models have provided inconsistent conclusions of whether TSPO is directly involved in steroid synthesis. In this report, we show that TSPO deletion mutations in rat and its corresponding rs6971 polymorphism in humans alter adrenocorticotropic hormone-induced plasma corticosteroid concentrations. Rat tissues examined show increased cholesteryl ester accumulation, and neurosteroid formation was undetectable in homozygous rats. These results also support a role for TSPO ligands in diseases with steroid-dependent stress and anxiety elements.


Biology of Reproduction | 2014

Murine Binder of Sperm Homolog 2 (BSPH2): The Black Sheep of the BSP Superfamily

Geneviève Plante; Jinjiang Fan; Puttaswamy Manjunath

ABSTRACT Proteins of the Binder of SPerm superfamily are known to bind choline phospholipids on sperm membrane and promote sperm capacitation. The current study focuses on the biochemical and functional characterization of the murine Binder of SPerm homolog 2 (BSPH2). A recombinant protein (rec-BSPH2) was expressed in Escherichia coli Rosetta-gami B (DE3)pLysS cells using pET32a vector. It was purified by immobilized metal ion affinity chromatography and refolded on column using a decreasing urea gradient. Rec-BSPH2 was found to share some binding characteristics with other BSP proteins, such as binding to gelatin, heparin, and epididymal sperm. Rec-BSPH2 as well as murine recombinant BSPH1 were found to have different immunofluorescence patterns when bound to uncapacitated versus capacitated sperm, indicating a rearrangement of these proteins on sperm surface during or following capacitation. Surprisingly, rec-BSPH2 was unable to bind phosphorylcholine liposomes or promote sperm capacitation. It is the first time that such results are reported for proteins of the BSP family. The results indicate that murine BSPH1 and BSPH2 might not have redundant functions, as is the case with bovine BSPs. This study could lead to a better understanding of the role of BSP proteins in sperm functions and the existence of redundant BSP proteins in the reproductive tract.

Collaboration


Dive into the Jinjiang Fan's collaboration.

Top Co-Authors

Avatar

Vassilios Papadopoulos

McGill University Health Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vassilios Papadopoulos

McGill University Health Centre

View shared research outputs
Top Co-Authors

Avatar

Andrew Midzak

McGill University Health Centre

View shared research outputs
Top Co-Authors

Avatar

Malena B. Rone

McGill University Health Centre

View shared research outputs
Top Co-Authors

Avatar

Leeyah Issop

McGill University Health Centre

View shared research outputs
Top Co-Authors

Avatar

Haolin Chen

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Josip Blonder

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

Xiaoying Ye

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

Aline Harlay

McGill University Health Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge