JinJiang Zhu
Pfizer
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by JinJiang Zhu.
Journal of Medicinal Chemistry | 2014
Ted W. Johnson; Paul F. Richardson; Simon Bailey; Alexei Brooun; Benjamin J. Burke; Michael Raymond Collins; J. Jean Cui; Judith Gail Deal; Ya-Li Deng; Dac M. Dinh; Lars D. Engstrom; Mingying He; Jacqui Elizabeth Hoffman; Robert Louis Hoffman; Qinhua Huang; Robert Steven Kania; John Charles Kath; Hieu Lam; Justine L. Lam; Phuong Thi Quy Le; Laura Lingardo; Wei Liu; Michele McTigue; Cynthia Louise Palmer; Neal W. Sach; Tod Smeal; Graham L. Smith; Albert E. Stewart; Sergei Timofeevski; Huichun Zhu
Although crizotinib demonstrates robust efficacy in anaplastic lymphoma kinase (ALK)-positive non-small-cell lung carcinoma patients, progression during treatment eventually develops. Resistant patient samples revealed a variety of point mutations in the kinase domain of ALK, including the L1196M gatekeeper mutation. In addition, some patients progress due to cancer metastasis in the brain. Using structure-based drug design, lipophilic efficiency, and physical-property-based optimization, highly potent macrocyclic ALK inhibitors were prepared with good absorption, distribution, metabolism, and excretion (ADME), low propensity for p-glycoprotein 1-mediated efflux, and good passive permeability. These structurally unusual macrocyclic inhibitors were potent against wild-type ALK and clinically reported ALK kinase domain mutations. Significant synthetic challenges were overcome, utilizing novel transformations to enable the use of these macrocycles in drug discovery paradigms. This work led to the discovery of 8k (PF-06463922), combining broad-spectrum potency, central nervous system ADME, and a high degree of kinase selectivity.
Journal of Medicinal Chemistry | 2014
Qinhua Huang; Ted W. Johnson; Simon Bailey; Alexei Brooun; Kevin D. Bunker; Benjamin J. Burke; Michael Raymond Collins; Andrew Simon Cook; J. Jean Cui; Kevin Neil Dack; Judith Gail Deal; Ya-Li Deng; Dac M. Dinh; Lars D. Engstrom; Mingying He; Jacqui Elizabeth Hoffman; Robert Louis Hoffman; Patrick Stephen Johnson; Robert Steven Kania; Hieu Lam; Justine L. Lam; Phuong Thi Quy Le; Qiuhua Li; Laura Lingardo; Wei Liu; Melissa West Lu; Michele McTigue; Cynthia Louise Palmer; Paul F. Richardson; Neal W. Sach
Crizotinib (1), an anaplastic lymphoma kinase (ALK) receptor tyrosine kinase inhibitor approved by the U.S. Food and Drug Administration in 2011, is efficacious in ALK and ROS positive patients. Under pressure of crizotinib treatment, point mutations arise in the kinase domain of ALK, resulting in resistance and progressive disease. The successful application of both structure-based and lipophilic-efficiency-focused drug design resulted in aminopyridine 8e, which was potent across a broad panel of engineered ALK mutant cell lines and showed suitable preclinical pharmacokinetics and robust tumor growth inhibition in a crizotinib-resistant cell line (H3122-L1196M).
ACS Medicinal Chemistry Letters | 2013
Hengmiao Cheng; Chunze Li; Simon Bailey; Sangita M. Baxi; Lance Goulet; Lisa Guo; Jacqui Elizabeth Hoffman; Ying Jiang; Theodore Otto Johnson; Ted W. Johnson; Daniel R. Knighton; John Li; Kevin Liu; Zhengyu Liu; Matthew A. Marx; Marlena Walls; Peter A. Wells; Min-Jean Yin; JinJiang Zhu; Michael Zientek
PI3K, AKT, and mTOR are key kinases from PI3K signaling pathway being extensively pursued to treat a variety of cancers in oncology. To search for a structurally differentiated back-up candidate to PF-04691502, which is currently in phase I/II clinical trials for treating solid tumors, a lead optimization effort was carried out with a tricyclic imidazo[1,5]naphthyridine series. Integration of structure-based drug design and physical properties-based optimization yielded a potent and selective PI3K/mTOR dual kinase inhibitor PF-04979064. This manuscript discusses the lead optimization for the tricyclic series, which both improved the in vitro potency and addressed a number of ADMET issues including high metabolic clearance mediated by both P450 and aldehyde oxidase (AO), poor permeability, and poor solubility. An empirical scaling tool was developed to predict human clearance from in vitro human liver S9 assay data for tricyclic derivatives that were AO substrates.
ACS Medicinal Chemistry Letters | 2011
Kevin Liu; JinJiang Zhu; Graham L. Smith; Min-Jean Yin; Simon Bailey; Jeffrey H. Chen; Qiyue Hu; Qinhua Huang; Chunze Li; Qing J. Li; Matthew A. Marx; Genevieve Paderes; Paul F. Richardson; Neal W. Sach; Marlena Walls; Peter A. Wells; Aihua Zou
Highly selective PI3K inhibitors with subnanomolar PI3Kα potency and greater than 7000-fold selectivity against mTOR kinase were discovered through structure-based drug design (SBDD). These tetra-substituted thiophenes were also demonstrated to have good in vitro cellular potency and good in vivo oral antitumor activity in a mouse PI3K driven NCI-H1975 xenograft tumor model. Compounds with the desired human PK predictions and good in vitro ADMET properties were also identified. In this communication, we describe the rationale behind the installation of a critical triazole moiety to maintain the intricate H-bonding network within the PI3K receptor leading to both better potency and selectivity. Furthermore, optimization of the C-4 phenyl group was exploited to maximize the compounds mTOR selectivity.
Clinical Cancer Research | 2014
Marlena Walls; Sangita M. Baxi; Pramod P. Mehta; Kevin K.-C. Liu; JinJiang Zhu; Heather Estrella; Chunze Li; Michael Zientek; Qing Zong; Tod Smeal; Min-Jean Yin
Purpose: Constitutive activation of phosphoinositide 3-kinase (PI3K) occurs frequently in many human tumors via either gene mutation in the p110α catalytic subunit of PI3K or functional loss of tumor suppressor PTEN. Patients with small-cell lung cancer (SCLC) have very poor prognosis and survival rates such that an effective targeted therapy is in strong demand for these patients. In this study, we characterized the highly selective oral PI3K inhibitor, PF-4989216, in preclinical SCLC models to investigate whether targeting the PI3K pathway is an effective targeted therapy option for SCLCs that harbor a PIK3CA mutation. Experimental Design: A panel of SCLC cell lines with PIK3CA mutation or PTEN loss were treated with PF-4989216 in several in vitro assays, including PI3K pathway signaling, cell viability, apoptosis, cell-cycle progression, and cell transformation. SCLC cell lines that were sensitive in vitro to PF-4989216 were further evaluated by in vivo animal studies to determine the pharmacokinetic/pharmacodynamic relationship and tumor growth inhibition (TGI) by PF-4989216 treatment. Results: PF-4989216 inhibited PI3K downstream signaling and subsequently led to apoptosis induction, and inhibition in cell viability, transformation, and xenograft tumor growth in SCLCs harboring PIK3CA mutation. In SCLCs with PTEN loss, PF-4989216 also inhibited PI3K signaling but did not induce BCL2-interacting mediator (BIM)-mediated apoptosis nor was there any effect on cell viability or transformation. These results implicate differential tumorigenesis and apoptosis mechanisms in SCLCs harboring PIK3CA mutation versus PTEN loss. Conclusions: Our results suggest that PF-4989216 is a potential cancer drug candidate for patients with SCLC with PIK3CA mutation but not PTEN loss. Clin Cancer Res; 20(3); 631–43. ©2013 AACR.
Acta Crystallographica Section E-structure Reports Online | 2009
JinJiang Zhu; Kevin K.-C. Liu; Matthew A. Marx; Arnold L. Rheingold; Alex Yanovsky
The title compound, C9H10N2O2S, was obtained from the treatment of ethyl 4-cyano-3-hydroxy-5-morpholinothiophene-2-carboxylate with concentrated HCl. The mean plane of the essentially planar dihydrothiophene ring is almost orthogonal to the mirror plane of the N-morpholine substituent, making a dihedral angle of 87.2 (2)°.
Journal of Medicinal Chemistry | 2014
Ted W. Johnson; Paul F. Richardson; Simon Bailey; Alexei Brooun; Benjamin J. Burke; Michael Raymond Collins; J. Jean Cui; Judith Gail Deal; Ya-Li Deng; Dac M. Dinh; Lars D. Engstrom; Mingying He; Jacqui Elizabeth Hoffman; Robert Louis Hoffman; Qinhua Huang; John Charles Kath; Robert Steven Kania; Hieu Lam; Justine L. Lam; Phuong Thi Quy Le; Laura Lingardo; Wei Liu; Michele McTigue; Cynthia Louise Palmer; Neal W. Sach; Tod Smeal; Graham L. Smith; Albert E. Stewart; Sergei Timofeevski; Huichun Zhu
Organic Process Research & Development | 2011
Qinhua Huang; Paul F. Richardson; Neal W. Sach; JinJiang Zhu; Kevin Liu; Graham L. Smith; Daniel Merritt Bowles
Journal of Medicinal Chemistry | 2017
Pei-Pei Kung; Patrick Bingham; Alexei Brooun; Michael Raymond Collins; Ya-Li Deng; Dac M. Dinh; Connie Fan; Ketan S. Gajiwala; Rita Grantner; Hovhannes J. Gukasyan; Wenyue Hu; Buwen Huang; Robert Steven Kania; Susan Kephart; Cody Krivacic; Robert Arnold Kumpf; Penney Khamphavong; Manfred Kraus; Wei Liu; Karen Maegley; Lisa Nguyen; Shijian Ren; Daniel T. Richter; Robert A. Rollins; Neal W. Sach; Shikhar Sharma; John Sherrill; Jillian E. Spangler; Albert E. Stewart; Scott C. Sutton
Cancer Research | 2013
Marlena Walls; Sangita M. Baxi; Pramod P. Mehta; Elizabeth Epps; Heather Estrella; Kevin Liu; JinJiang Zhu; Chunze Li; Tod Smeal; Min-Jean Yin