Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jinju Han is active.

Publication


Featured researches published by Jinju Han.


Nature | 2003

The nuclear RNase III Drosha initiates microRNA processing

Yoontae Lee; Chiyoung Ahn; Jinju Han; Hyounjeong Choi; Jaekwang Kim; Jeongbin Yim; Junho Lee; Patrick Provost; Olof Rådmark; Sunyoung Kim; V. Narry Kim

Hundreds of small RNAs of ∼22 nucleotides, collectively named microRNAs (miRNAs), have been discovered recently in animals and plants. Although their functions are being unravelled, their mechanism of biogenesis remains poorly understood. miRNAs are transcribed as long primary transcripts (pri-miRNAs) whose maturation occurs through sequential processing events: the nuclear processing of the pri-miRNAs into stem-loop precursors of ∼70 nucleotides (pre-miRNAs), and the cytoplasmic processing of pre-miRNAs into mature miRNAs. Dicer, a member of the RNase III superfamily of bidentate nucleases, mediates the latter step, whereas the processing enzyme for the former step is unknown. Here we identify another RNase III, human Drosha, as the core nuclease that executes the initiation step of miRNA processing in the nucleus. Immunopurified Drosha cleaved pri-miRNA to release pre-miRNA in vitro. Furthermore, RNA interference of Drosha resulted in the strong accumulation of pri-miRNA and the reduction of pre-miRNA and mature miRNA in vivo. Thus, the two RNase III proteins, Drosha and Dicer, may collaborate in the stepwise processing of miRNAs, and have key roles in miRNA-mediated gene regulation in processes such as development and differentiation.


The EMBO Journal | 2004

MicroRNA genes are transcribed by RNA polymerase II

Yoontae Lee; Minju Kim; Jinju Han; Kyu-Hyun Yeom; Sanghyuk Lee; Sung Hee Baek; V. Narry Kim

MicroRNAs (miRNAs) constitute a large family of noncoding RNAs that function as guide molecules in diverse gene silencing pathways. Current efforts are focused on the regulatory function of miRNAs, while little is known about how these unusual genes themselves are regulated. Here we present the first direct evidence that miRNA genes are transcribed by RNA polymerase II (pol II). The primary miRNA transcripts (pri‐miRNAs) contain cap structures as well as poly(A) tails, which are the unique properties of class II gene transcripts. The treatment of human cells with α‐amanitin decreased the level of pri‐miRNAs at a concentration that selectively inhibits pol II activity. Furthermore, chromatin immunoprecipitation analyses show that pol II is physically associated with a miRNA promoter. We also describe, for the first time, the detailed structure of a miRNA gene by determining the promoter and the terminator of mir‐23a∼27a∼24‐2. These data indicate that pol II is the main, if not the only, RNA polymerase for miRNA gene transcription. Our study offers a basis for understanding the structure and regulation of miRNA genes.


Nature Reviews Molecular Cell Biology | 2009

Biogenesis of small RNAs in animals

V. Narry Kim; Jinju Han; Mikiko C. Siomi

Small RNAs of 20–30 nucleotides can target both chromatin and transcripts, and thereby keep both the genome and the transcriptome under extensive surveillance. Recent progress in high-throughput sequencing has uncovered an astounding landscape of small RNAs in eukaryotic cells. Various small RNAs of distinctive characteristics have been found and can be classified into three classes based on their biogenesis mechanism and the type of Argonaute protein that they are associated with: microRNAs (miRNAs), endogenous small interfering RNAs (endo-siRNAs or esiRNAs) and Piwi-interacting RNAs (piRNAs). This Review summarizes our current knowledge of how these intriguing molecules are generated in animal cells.


Cell | 2006

Molecular Basis for the Recognition of Primary microRNAs by the Drosha-DGCR8 Complex

Jinju Han; Yoontae Lee; Kyu-Hyeon Yeom; Jin-Wu Nam; Inha Heo; Je-Keun Rhee; Sun Young Sohn; Yunje Cho; Byoung-Tak Zhang; V. Narry Kim

The Drosha-DGCR8 complex initiates microRNA maturation by precise cleavage of the stem loops that are embedded in primary transcripts (pri-miRNAs). Here we propose a model for this process that is based upon evidence from both computational and biochemical analyses. A typical metazoan pri-miRNA consists of a stem of approximately 33 bp, with a terminal loop and flanking segments. The terminal loop is unessential, whereas the flanking ssRNA segments are critical for processing. The cleavage site is determined mainly by the distance (approximately 11 bp) from the stem-ssRNA junction. Purified DGCR8, but not Drosha, interacts with pri-miRNAs both directly and specifically, and the flanking ssRNA segments are vital for this binding to occur. Thus, DGCR8 may function as the molecular anchor that measures the distance from the dsRNA-ssRNA junction. Our current study thus facilitates the prediction of novel microRNAs and will assist in the rational design of small hairpin RNAs for RNA interference.


Cell | 2009

TUT4 in Concert with Lin28 Suppresses MicroRNA Biogenesis through Pre-MicroRNA Uridylation

Inha Heo; Chirlmin Joo; Young-Kook Kim; Minju Ha; Mi-Jeong Yoon; Jun Cho; Kyu-Hyeon Yeom; Jinju Han; V. Narry Kim

As key regulators in cellular functions, microRNAs (miRNAs) themselves need to be tightly controlled. Lin28, a pluripotency factor, was reported to downregulate let-7 miRNA by inducing uridylation of let-7 precursor (pre-let-7). But the enzyme responsible for the uridylation remained unknown. Here we identify a noncanonical poly (A) polymerase, TUTase4 (TUT4), as the uridylyl transferase for pre-let-7. Lin28 recruits TUT4 to pre-let-7 by recognizing a tetra-nucleotide sequence motif (GGAG) in the terminal loop. TUT4 in turn adds an oligouridine tail to the pre-let-7, which blocks Dicer processing. Other miRNAs with the same sequence motif (miR-107, -143, and -200c) are regulated through the same mechanism. Knockdown of TUT4 and Lin28 reduces the level of stem cell markers, suggesting that they are required for stem cell maintenance. This study uncovers the role of TUT4 and Lin28 as specific suppressors of miRNA biogenesis, which has implications for stem cell research and cancer biology.


Cell | 2009

Posttranscriptional Crossregulation between Drosha and DGCR8

Jinju Han; Jakob Skou Pedersen; S. Chul Kwon; Cassandra D. Belair; Young-Kook Kim; Kyu-Hyeon Yeom; Woo-Young Yang; David Haussler; Robert Blelloch; V. Narry Kim

The Drosha-DGCR8 complex, also known as Microprocessor, is essential for microRNA (miRNA) maturation. Drosha functions as the catalytic subunit, while DGCR8 (also known as Pasha) recognizes the RNA substrate. Although the action mechanism of this complex has been intensively studied, it remains unclear how Drosha and DGCR8 are regulated and if these proteins have any additional role(s) apart from miRNA processing. Here, we report that Drosha and DGCR8 regulate each other posttranscriptionally. The Drosha-DGCR8 complex cleaves the hairpin structures embedded in the DGCR8 mRNA and thereby destabilizes the mRNA. We further find that DGCR8 stabilizes the Drosha protein via protein-protein interaction. This crossregulation between Drosha and DGCR8 may contribute to the homeostatic control of miRNA biogenesis. Furthermore, microarray analyses suggest that a number of mRNAs may be downregulated in a Microprocessor-dependent, miRNA-independent manner. Our study reveals a previously unsuspected function of Microprocessor in mRNA stability control.


Nucleic Acids Research | 2006

Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing

Kyu-Hyeon Yeom; Yoontae Lee; Jinju Han; Mi Ra Suh; V. Narry Kim

DGCR8/Pasha is an essential cofactor for Drosha, a nuclear RNase III that cleaves the local hairpin structures embedded in long primary microRNA transcripts (pri-miRNAs) in eukaryotes. Although our knowledge of pri-miRNA processing has significantly advanced in recent years, the precise role of DGCR8 in this pathway remains unclear. In our present study, we dissect the domains in DGCR8 that contribute to the processing of pri-miRNAs and the subcellular localization of DGCR8. Drosha is stabilized through an interaction between its middle domain and the conserved C-terminal domain of DGCR8. Furthermore, DGCR8, but not Drosha, can directly and stably interact with pri-miRNAs, and the tandem dsRNA-binding domains (dsRBDs) in DGCR8 are responsible for this recognition. Moreover, the DGCR8 N-terminal region upstream of its dsRBDs is unnecessary for pri-miRNA processing but is critical for nuclear localization. Our study thus provides further insights into the mechanism of action of the Drosha–DGCR8 complex in pri-miRNA processing.


Molecular and Cellular Biology | 2009

Human UPF1 participates in small RNA-induced mRNA downregulation.

Hua Jin; Mi Ra Suh; Jinju Han; Kyu-Hyeon Yeom; Yoontae Lee; Inha Heo; Minju Ha; Seogang Hyun; V. Narry Kim

ABSTRACT MicroRNAs (miRNAs) are endogenous antisense regulators that trigger endonucleolytic mRNA cleavage, translational repression, and/or mRNA decay. miRNA-mediated gene regulation is important for numerous biological pathways, yet the underlying mechanisms are still under rigorous investigation. Here we identify human UPF1 (hUPF1) as a protein that contributes to RNA silencing. When hUPF1 is knocked down, miRNA targets are upregulated. The depletion of hUPF1 also increases the off-target messages of small interfering RNAs (siRNAs), which are imperfectly complementary to transfected siRNAs. Conversely, when overexpressed, wild-type hUPF1 downregulates miRNA targets. The helicase domain mutant of hUPF1 fails to suppress miRNA targets. hUPF1 interacts with human Argonaute 1 (hAGO1) and hAGO2 and colocalizes with hAGO1 and hAGO2 in processing bodies, which are known to be the sites for translational repression and mRNA destruction. We further find that the amounts of target messages bound to hAGO2 are reduced when hUPF1 is depleted. Our data thus suggest that hUPF1 may participate in RNA silencing by facilitating the binding of the RNA-induced silencing complex to the target and by accelerating the decay of the mRNA.


Genes & Development | 2004

The Drosha-DGCR8 complex in primary microRNA processing

Jinju Han; Yoontae Lee; Kyu-Hyun Yeom; Young-Kook Kim; Hua Jin; V. Narry Kim


Molecular Cell | 2008

Lin28 Mediates the Terminal Uridylation of let-7 Precursor MicroRNA

Inha Heo; Chirlmin Joo; Jun Cho; Minju Ha; Jinju Han; V. Narry Kim

Collaboration


Dive into the Jinju Han's collaboration.

Top Co-Authors

Avatar

V. Narry Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Yoontae Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Kyu-Hyeon Yeom

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Inha Heo

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Hua Jin

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Kyu-Hyun Yeom

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Minju Ha

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Young-Kook Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jin-Wu Nam

Seoul National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge