Jinjuan Fu
Third Military Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jinjuan Fu.
European Journal of Pharmacology | 2013
Zhen Wang; Yukai Liu; Yu Han; Weiwei Guan; Xun Kou; Jinjuan Fu; Di Yang; Hongmei Ren; Duofen He; Lin Zhou; Chunyu Zeng
The protective effect of aliskiren on ischemia-reperfusion (I/R) injury in the heart and brain has been reported. Whether or not this protective effect extends into the alleviation of renal I/R injury is not known. Therefore, we investigated the protective effect of aliskiren in the kidney in this study. Sprague-Dawley rats were randomly divided into four groups: sham control group; sham control with aliskiren pretreatment; I/R group and I/R with aliskiren pretreatment. Aliskiren (3mg/kg) or vehicle was administrated intravenously via vena cava. Blood samples and the left kidneys were then collected to check for renal function, angiotensin II (Ang II), apoptosis and oxidative stress levels. Compared with the sham rats, serum creatinine (SCR) and blood urea nitrogen (BUN) were significantly increased in the I/R rats, accompanied by histopathological damage to the kidney, which included tubular cell swelling, desquamation, and cast formation. There were also more apoptotic cells and leukocyte infiltration in the I/R rats than in the sham rats. Pretreatment with aliskiren ameliorated I/R induced renal injury, i.e. reduced SCR and BUN levels, ameliorated renal histopathological changes, and decreased the apoptosis of cells and leukocyte infiltration in kidney. I/R injury also decreased superoxide dismutase (SOD) and glutathione (GSH-reduced form) levels, which were blocked with the aliskiren pretreatment. Aliskiren pretreatment exerts a protective effect on ischemia/reperfusion injury in the kidney, via amelioration of oxidative stress, and reduction in leukocyte infiltration and cellular apoptosis.
PLOS ONE | 2016
Zhao Gao; Yu Han; Yunhui Hu; Xiaoyan Wu; Yongbin Wang; Xiaoqun Zhang; Jinjuan Fu; Xue Zou; Jun Zhang; Xiongwen Chen; Pedro A. Jose; Xi Lu; Chunyu Zeng
Both oxidative stress and inflammation are involved in the pathogenesis of contrast-induced nephropathy (CIN). Epigallocatechin-3-gallate (EGCG), a purified catechin from green tea, has antioxidant and anti-inflammatory effects. However, it is unknown whether or not EGCG is effective in treating CIN. Our present study found that intravenous administration of EGCG, either before or just after the establishment of CIN, had a protective effect, determined by normalization of serum creatinine and blood urea nitrogen levels, improvement in renal histopathological scoring and alleviation of apoptosis, accompanied by decreased oxidative stress and inflammation. Because EGCG is a potent inducer of the antioxidant heme oxygenase-1 (HO-1), we studied HO-1 signaling in CIN. HO-1 levels were increased in CIN; treatment with EGCG further increased HO-1 levels, accompanied by an increase in Nrf2, a regulator of antioxidant proteins. Interestingly, blockade of HO-1 with protoporphyrin IX zinc(II) (ZnPP) prevented the protective effect of EGCG on CIN. ZnPP also blocked the ability of EGCG to increase the activity of an antioxidant (superoxide dismutase), and decrease markers of oxidative stress (myeloperoxidase and malondialdehyde) and inflammation (myeloperoxidase and IL-1β), indicating that HO-1 is the upstream molecule that regulates the EGCG-mediated protection. To determine further the role of HO-1 on the EGCG-mediated inhibition of inflammation, we studied the effect of EGCG on the NLRP3 inflammasome, an upstream signaling of IL-1β. EGCG down-regulated NLRP3 expression, which was blocked by ZnPP, indicating that HO-1 links EGCG with NLRP3. Therefore, EGCG, via up-regulation of HO-1, protects against CIN by amelioration of oxidative stress and inflammation.
Journal of the American Heart Association | 2016
Jinjuan Fu; Yu Han; Jialiang Wang; Yukai Liu; Shuo Zheng; Lin Zhou; Pedro A. Jose; Chunyu Zeng
Background Exercise is a major nonpharmacological treatment for hypertension, but its underlying mechanisms are still not completely elucidated. Irisin, a polypeptide containing 112 amino acids, which is secreted mainly by skeletal muscle cells during exercise, exerts a protective role in metabolic diseases, such as diabetes mellitus and obesity. Because of the close relationship between irisin and metabolic diseases, we hypothesized that irisin may play a role in the regulation of blood pressure. Methods and Results Blood pressures of male Wistar‐Kyoto (WKY) rats and spontaneously hypertensive rats (SHRs) were monitored through the carotid artery. Our study found that acute intravenous injection of irisin reduced blood pressure in SHRs, but not WKY rats. Irisin, by itself, had no direct vasorelaxing effect in phenylephrine‐preconstricted mesenteric arteries from SHRs. However, irisin augmented the acetylcholine‐induced vasorelaxation in mesenteric arteries from SHRs that could be reversed by Nω‐nitro‐l‐arginine‐methyl ester (L‐NAME; 100 μmol/L), indicating a role of nitric oxide (NO) in this action. Indeed, irisin increased NO production and phosphorylation of endothelial nirtic oxide synthase (eNOS) in endothelial cells. 5′‐AMP‐activated protein kinase (AMPK) was involved in the vasorelaxing effect of irisin because compound C (20 μmol/L), an AMPK inhibitor, blocked the irisin‐mediated increase in phosphorylation of eNOS and protein kinase B (Akt) in endothelial cells and vasodilation in mesenteric arteries. Conclusions We conclude that acute administration of irisin lowers blood pressure of SHRs by amelioration of endothelial dysfunction of the mesenteric artery through the AMPK‐Akt‐eNOS‐NO signaling pathway.
Transplantation | 2015
Zhen Wang; Weiwei Guan; Yu Han; Hongmei Ren; Xiaofeng Tang; Hui Zhang; Yukai Liu; Jinjuan Fu; Duofen He; Laureano D. Asico; Pedro A. Jose; Lin Zhou; Liyong Chen; Chunyu Zeng
Background Renal ischemia-reperfusion (I/R) injury causes renal tubular necrosis, apoptosis, and inflammation leading to acute renal dysfunction. Recent studies have revealed that deletion of G&agr;12 mitigates the renal damage due to I/R injury. Our previous study showed that activation of dopamine D3 receptor (D3R) increased its linkage with G&agr;12, and hampered G&agr;12-mediated stimulation of renal sodium transport. In the present study, we used an in-vivo rat model and an in vitro study of the renal epithelial cell line (NRK52E) to investigate whether or not an increased linkage between D3R and G&agr;12 contributes to the protective effect of D3R on renal I/R injury. Methods For in vivo studies, I/R injury was induced in a rat renal unilateral clamping model. For in vitro studies, hypoxia/reoxygenation and cold storage/rewarming injuries were performed in NRK52E cells. PD128907, a D3R agonist, or vehicle, was administered 15 minutes before clamping (or hypoxia) in both the in vivo or in vitro studies. Results In the rat renal unilateral clamping model, pretreatment with PD128907 (0.2 mg/kg, intravenous) protected against renal I/R injury and increased survival rate during a long-term follow-up after 7 days. A decrease in the generation of reactive oxygen species, apoptosis, and inflammation may be involved in the D3R-mediated protection because pretreatment with PD128907 increased renal glutathione and superoxide dismutase levels and decreased malondialdehyde levels in the I/R group. The increase in cytokines (TNF-&agr;, IL-1&bgr;, and IL-10) and myeloperoxidase in I/R injured kidney was also prevented with a simultaneous decrease in the apoptosis of the epithelial cells and expression of apoptosis biomarkers in kidney harvested 1 day after I/R injury. The increase in the coimmunoprecipitation between D3R and G&agr;12 with D3R stimulation paralleled the observed renal protection from I/R injury. Moreover, in vitro studies showed that transient overexpression of G&agr;12 in the NRK52E cells attenuated the protective effect of PD128907 on hypoxia/reoxygenation injury. The protective effect of PD128907 might be of significance to renal transplantation because cold storage/rewarming induced injury increased lactate dehydrogenase release and decreased cell viability in NRK52E cells. Conversely, in the presence of PD128907, the increased lactate dehydrogenase release and decreased cell viability were reversed. Conclusions These results suggest that activation of D3R, by decreasing G&agr;12-induced renal damage, may exert a protective effect from I/R injury.
Clinical and Experimental Hypertension | 2014
Xun Kou; Yu Han; Di Yang; Yukai Liu; Jinjuan Fu; Shuo Zheng; Duofen He; Lin Zhou; Chunyu Zeng
Abstract Objective: Proliferation of vascular smooth muscle cells (VSMCs) participates in the pathogenesis and development of cardiovascular diseases, including essential hypertension and atherosclerosis. Our previous study found that stimulation of D1-like dopamine receptors inhibited insulin-induced proliferation of VSMCs. Insulin-like growth factor-1 (IGF-1) and insulin share similar structure and biological effect. However, whether or not there is any effect of D1-like receptors on IGF-1-induced proliferation of VSMCs is not known. Therefore, we investigated the inhibitory effect of D1-like dopamine receptors on the IGF-1-induced VSMCs proliferation in this study. Method: VSMC proliferation was determined by [3H]-thymidine incorporation, the uptake of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and cell number. Phosphorylated/non-phosphorylated IGF-1 receptor, Akt, mTOR and p70S6K expressions were determined by immunoblotting. The oligodeoxynucleotides were transfected to A10 cells to identify the effect of D1 and D5 receptors, respectively. Results: IGF-1 increased the proliferation of VSMCs, while in the presence of fenoldopam, IGF-1-mediated stimulatory effect was reduced. Use of either antisense for D1 or D5 receptor partially inhibited the fenoldopam-induced antiproliferation effect of VSMCs. Use of both D1 and D5 receptor antisenses completely blocked the inhibitory effect of fenoldopam. In the presence of PI3k and mTOR inhibitors, the IGF-1-mediated proliferation of VSMCs was blocked. Moreover, IGF-1 increased the phosphorylation of PI3k and mTOR. The inhibitory effect of fenoldopam on VSMC proliferation might be due to the inhibition of IGF-1 receptor expression and IGF-1 phosphorylation, because in the presence of fenoldopam, the stimulatory effect of IGF-1 on phosphorylation of IGF-1 receptor, PI3k and mTOR is reduced, the IGF-1 receptor expression was reduced in A10 cells. Conclusion: Activation of the D1-like receptors suppressed the proliferative effect of IGF-1 in A10 cells via the inhibition of the IGF-1R/Akt/mTOR/p70S6K pathway and downregulated the expression of IGF-1 receptor.
Free Radical Biology and Medicine | 2015
Xinquan Wang; Jialiang Wang; Hao Luo; Caiyu Chen; Fang Pei; Yue Cai; Xiaoli Yang; Na Wang; Jinjuan Fu; Zaichen Xu; Lin Zhou; Chunyu Zeng
Cardiovascular diseases, such as hypertension, could be programmed in fetal life. Prenatal lipopolysaccharide (LPS) exposure in utero results in increased blood pressure in offspring, but the vascular mechanisms involved are unclear. Pregnant Sprague-Dawley rats were intraperitoneally injected with LPS (0.79mg/kg) or saline (0.5ml) on gestation days 8, 10, and 12. The offspring of LPS-treated dams had higher blood pressure and decreased acetylcholine (ACh)-induced relaxation and increased phenylephrine (PE)-induced contraction in endothelium-intact mesenteric arteries. Endothelium removal significantly enhanced the PE-induced contraction in offspring of control but not LPS-treated dams. The arteries pretreated with l-NAME to inhibit nitric oxide synthase (eNOS) in the endothelium or ODQ to inhibit cGMP production in the vascular smooth muscle had attenuated ACh-induced relaxation but augmented PE-induced contraction to a larger extent in arteries from offspring of control than those from LPS-treated dams. In addition, the endothelium-independent relaxation caused by sodium nitroprusside was also decreased in arteries from offspring of LPS-treated dams. The functional results were accompanied by a reduction in the expressions of eNOS and soluble guanylate cyclase (sGC) and production of NO and cGMP in arteries from offspring of LPS-treated dams. Furthermore, LPS-treated dams offspring arteries had increased oxidative stress and decreased antioxidant capacity. Three-week treatment with TEMPOL, a reactive oxygen species (ROS) scavenger, normalized the alterations in the levels of ROS, eNOS, and sGC, as well as in the production of NO and cGMP and vascular function in the arteries of the offspring of LPS-treated dams. In conclusion, prenatal LPS exposure programs vascular dysfunction of mesenteric arteries through increased oxidative stress and impaired NO-cGMP signaling pathway.
Biochemical and Biophysical Research Communications | 2016
Tianyang Xia; Weiwei Guan; Jinjuan Fu; Xue Zou; Yu Han; Caiyu Chen; Lin Zhou; Chunyu Zeng; Wei Eric Wang
Tirofiban, a glycoprotein IIb/IIIa inhibitor, is an antiplatelet drug extensively used in patients with acute coronary syndrome (ACS) and exerts an therapeutic effect on no-reflow phenomenon during percutaneous coronary intervention (PCI). Previous studies elucidated the vasodilation caused by tirofiban in the peripheral artery. However, whether tirofiban exerts a vasodilator effect on the coronary artery is unclear. Our present study found that tirofiban induced endothelium-dependent vasodilation in a concentration- and time-dependent manner in the isolated rat coronary artery pre-constricted by 5-hydroxytryptamine (5-HT). Further study showed that incubation of human umbilical venous endothelial cells (HUVECs) with tirofiban increased NO production, which was ascribed to the increased eNOS phosphorylation. This was confirmed by the loss of the vasorelaxant effect of tirofiban in the presence of l-NAME (eNOS inhibitor) and L-NMMA (NOS inhibitor) but not SMT (iNOS inhibitor) on isolated rat coronary arteries. The vasorelaxation was also blocked by the PI3K inhibitors, wortmannin and LY294002, as well as the Akt inhibitor SH-5, indicating the role of PI3K and Akt in tirofiban-mediated vasodilation. Moreover, further study showed that soluble guanylyl cyclase (sGC) inhibitor ODQ, or blockers of potassium channel (big-conductance calcium-activated potassium channel) blocked tirofiban-induced vasodilation of the coronary artery. These findings suggest that tirofiban induces vasorelaxation via an endothelium-dependent NO-cGMP signaling through the activation of the Akt/eNOS/sGC pathway.
Heart | 2015
Jinjuan Fu; Yu Han; Zhen Wang; Xj Cheng; Liang Zhou; C. Zeng
Background Obesity plays an important role in the pathogenesis of hypertension. Renal dopamine D1-like receptor-mediated diuresis and natriuresis are impaired in the obese Zucker rat, an obesity-related hypertensive rat model. The role of arterial D1 receptors in the hypertension of obese Zucker rats is not clear. Methods Plasma glucose and insulin concentrations and blood pressure were measured. The vasodilatory response of isolated mesenteric arteries was evaluated using a small vessel myograph. The expression and phosphorylation of D1 receptors were quantified by co-immunoprecipitation and immunoblotting To determine the effect of hyperinsulinemia and hyperglycemia on the function of the arterial D1 receptor, we studied obese Zucker rats (six to eight-weeks old) fed (6 weeks) vehicle or rosiglitazone, an insulin sensitiser (10 mg/kg per day) and lean Zucker rats (eight to ten-weeks old), fed high-fat diet to induce hyperinsulinemia or injected intraperitoneally with streptomycin (STZ) to induce hyperglycemia. Results In obese Zucker rats, the vasorelaxant effect of D1-like receptors was impaired that could be ascribed to decreased arterial D1 receptor expression and increased D1 receptor phosphorylation. In these obese rats, rosiglitazone normalised the arterial D1 receptor expression and phosphorylation and improved the D1-like receptor-mediated vasorelaxation. We also found that D1 receptor-dependent vasorelaxation was decreased in lean Zucker rats with hyperinsulinemia or hyperglycemia but the D1 receptor dysfunction was greater in the former than in the latter group. The ability of insulin and glucose to decrease D1 receptor expression and increase its phosphorylation were confirmed in studies of rat aortic smooth muscle cells. Conclusions Both hyperinsulinemia and hyperglycemia caused D1 receptor dysfunction by decreasing arterial D1 receptor expression and increasing D1 receptor phosphorylation. Impaired D1 receptor-mediated vasorelaxation is involved in the pathogenesis of obesity-related hypertension.
Heart | 2013
Kou Xun; Yu Han; Di Yang; Jinjuan Fu; Shuo Zheng; Duofen He; Lin Zhou; Chunyu Zeng
Objectives Proliferation of vascular smooth muscle cells (VSMCs) participates in the pathogenesis and development of cardiovascular diseases, including essential hypertension and atherosclerosis. Our previous study found that stimulation of D1-like dopamine receptors inhibited insulin-induced proliferation of VSMCs. Insulin-like growth factor-1 (IGF-1) and insulin share similar structure and biological effect. However, whether or not there is any effect of D1-like receptors on IGF-1-induced proliferation of VSMCs is not known. Therefore, we investigated the inhibitory effect of D1-like dopamine receptors on the IGF-1-induced VSMCs proliferation in this study. Methods VSMC proliferation was determined by [3H]-thymidinein corporation, the uptake of 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay and cell number. Phosphorylated/non-phosphorylated IGF-1 receptor, Akt, mTOR and p70S6K expressions were determined by immunoblotting. The oligodeoxynucleotides were transfected to A10 cells to identify the effect of D1 and D5 receptors respectively. Results IGF-1 increased the proliferation of VSMCs, while in the presence of fenoldopam, IGF-1 mediated stimulatory effect was reduced. Use of either the antisense for D1 or D5 receptor partially inhibited the fenoldopam-induced anti-proliferation effect of VSMCs. Use of both D1 andD5 receptor antisenses completely blocked the inhibitory effect of fenoldopam. In the presence of PI3k and mTOR inhibitors, the IGF-1 mediated proliferation of VSMCs was blocked. Moreover, IGF-1 increased the phosphorylation of PI3k and mTOR. The inhibitory effect of fenoldopam on VSMC proliferation might be due to the inhibition of IGF-1 receptor expression and IGF-1 phosphorylation, since in the presence offenoldopam, the stimulatory effect of IGF-1 on phosphorylation of IGF-1 receptor, PI3k and mTOR is reduced, the IGF-1 receptor expression was reducedin A10 cells. Conclusions Activation of the D1-like receptors suppressed the proliferative effect of IGF-1 in A10 cells via the inhibition of the IGF-1R/Akt/mTOR/p70S6K pathway.
Cardiovascular Research | 2016
Yue Cai; Yujia Yang; Xiongwen Chen; Genze Wu; Xiaoqun Zhang; Yukai Liu; Junyi Yu; Xinquan Wang; Jinjuan Fu; Chuanwei Li; Pedro A. Jose; Chunyu Zeng; Lin Zhou