Jinlu Wu
National University of Singapore
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jinlu Wu.
BMC Genomics | 2007
Jiann Horng Leu; Chih Chin Chang; Jinlu Wu; Chun Wei Hsu; Ikuo Hirono; Takashi Aoki; Hsueh-Fen Juan; Chu Fang Lo; Guang Hsiung Kou; H.-C. Huang
BackgroundWhite spot syndrome (WSS) is a viral disease that affects most of the commercially important shrimps and causes serious economic losses to the shrimp farming industry worldwide. However, little information is available in terms of the molecular mechanisms of the host-virus interaction. In this study, we used an expressed sequence tag (EST) approach to observe global gene expression changes in white spot syndrome virus (WSSV)-infected postlarvae of Penaeus monodon.ResultsSequencing of the complementary DNA clones of two libraries constructed from normal and WSSV-infected postlarvae produced a total of 15,981 high-quality ESTs. Of these ESTs, 46% were successfully matched against annotated genes in National Center of Biotechnology Information (NCBI) non-redundant (nr) database and 44% were functionally classified using the Gene Ontology (GO) scheme. Comparative EST analyses suggested that, in postlarval shrimp, WSSV infection strongly modulates the gene expression patterns in several organs or tissues, including the hepatopancreas, muscle, eyestalk and cuticle. Our data suggest that several basic cellular metabolic processes are likely to be affected, including oxidative phosphorylation, protein synthesis, the glycolytic pathway, and calcium ion balance. A group of immune-related chitin-binding protein genes is also likely to be strongly up regulated after WSSV infection. A database containing all the sequence data and analysis results is accessible at http://xbio.lifescience.ntu.edu.tw/pm/.ConclusionThis study suggests that WSSV infection modulates expression of various kinds of genes. The predicted gene expression pattern changes not only reflect the possible responses of shrimp to the virus infection but also suggest how WSSV subverts cellular functions for virus multiplication. In addition, the ESTs reported in this study provide a rich source for identification of novel genes in shrimp.
Molecular & Cellular Proteomics | 2007
Zhengjun Li; Qingsong Lin; Jing Chen; Jinlu Wu; Teck Kwang Lim; Siew See Loh; Xuhua Tang; Choy Leong Hew
White spot syndrome virus (WSSV) is a major pathogen that causes severe mortality and economic losses to shrimp cultivation worldwide. The genome of WSSV contains a 305-kb double-stranded circular DNA, which encodes 181 predicted ORFs. Previous gel-based proteomics studies on WSSV have identified 38 structural proteins. In this study, we applied shotgun proteomics using off-line coupling of an LC system with MALDI-TOF/TOF MS/MS as a complementary and comprehensive approach to investigate the WSSV proteome. This approach led to the identification of 45 viral proteins; 13 of them are reported for the first time. Seven viral proteins were found to have acetylated N termini. RT-PCR confirmed the mRNA expression of these 13 newly identified viral proteins. Furthermore iTRAQ (isobaric tags for relative and absolute quantification), a quantitative proteomics strategy, was used to distinguish envelope proteins and nucleocapsid proteins of WSSV. Based on iTRAQ ratios, we successfully identified 23 envelope proteins and six nucleocapsid proteins. Our results validated 15 structural proteins with previously known localization in the virion. Furthermore the localization of an additional 12 envelope proteins and two nucleocapsid proteins was determined. We demonstrated that iTRAQ is an effective approach for high throughput viral protein localization determination. Altogether WSSV is assembled by at least 58 structural proteins, including 13 proteins newly identified by shotgun proteomics and one identified by iTRAQ. The localization of 42 structural proteins was determined; 33 are envelope proteins, and nine are nucleocapsid proteins. A comprehensive identification of WSSV structural proteins and their localization should facilitate the studies of its assembly and mechanism of infection.
Journal of Virology | 2007
Xuhua Tang; Jinlu Wu; J. Sivaraman; Choy Leong Hew
ABSTRACT White spot syndrome virus (WSSV) is a virulent pathogen known to infect various crustaceans. It has bacilliform morphology with a tail-like appendage at one end. The envelope consists of four major proteins. Envelope structural proteins play a crucial role in viral infection and are believed to be the first molecules to interact with the host. Here, we report the localization and crystal structure of major envelope proteins VP26 and VP28 from WSSV at resolutions of 2.2 and 2.0 Å, respectively. These two proteins alone account for approximately 60% of the envelope, and their structures represent the first two structural envelope proteins of WSSV. Structural comparisons among VP26, VP28, and other viral proteins reveal an evolutionary relationship between WSSV envelope proteins and structural proteins from other viruses. Both proteins adopt β-barrel architecture with a protruding N-terminal region. We have investigated the localization of VP26 and VP28 using immunoelectron microscopy. This study suggests that VP26 and VP28 are located on the outer surface of the virus and are observed as a surface protrusion in the WSSV envelope, and this is the first convincing observation for VP26. Based on our studies combined with the literature, we speculate that the predicted N-terminal transmembrane region of VP26 and VP28 may anchor on the viral envelope membrane, making the core β-barrel protrude outside the envelope, possibly to interact with the host receptor or to fuse with the host cell membrane for effective transfer of the viral infection. Furthermore, it is tempting to extend this host interaction mode to other structural viral proteins of similar structures. Our finding has the potential to extend further toward drug and vaccine development against WSSV.
Journal of Virology | 2007
Jinlu Wu; Qingsong Lin; Teck Kwang Lim; Tiefei Liu; Choy Leong Hew
ABSTRACT Shrimp subcuticular epithelial cells are the initial and major targets of white spot syndrome virus (WSSV) infection. Proteomic studies of WSSV-infected subcuticular epithelium of Penaeus monodon were performed through two approaches, namely, subcellular fractionation coupled with shotgun proteomics to identify viral and host proteins and a quantitative time course proteomic analysis using cleavable isotope-coded affinity tags (cICATs) to identify differentially expressed cellular proteins. Peptides were analyzed by offline coupling of two-dimensional liquid chromatography with matrix-assisted laser desorption ionization-tandem time of flight mass spectrometry. We identified 27, 20, and 4 WSSV proteins from cytosolic, nuclear, and membrane fractions, respectively. Twenty-eight unique WSSV proteins with high confidence (total ion confidence interval percentage [CI%], >95%) were observed, 11 of which are reported here for the first time, and 3 of these novel proteins were shown to be viral nonstructural proteins by Western blotting analysis. A first shrimp protein data set containing 1,999 peptides (ion score, ≥20) and 429 proteins (total ion score CI%, >95%) was constructed via shotgun proteomics. We also identified 10 down-regulated proteins and 2 up-regulated proteins from the shrimp epithelial lysate via cICAT analysis. This is the first comprehensive study of WSSV-infected epithelia by proteomics. The 11 novel viral proteins represent the latest addition to our knowledge of the WSSV proteome. Three proteomic data sets consisting of WSSV proteins, epithelial cellular proteins, and differentially expressed cellular proteins generated in the course of WSSV infection provide a new resource for further study of WSSV-shrimp interactions.
Virology | 2010
Jinlu Wu; Robin B. Chan; Markus R. Wenk; Choy Leong Hew
Abstract Singapore grouper iridoviruses (SGIV) infected grouper cells release few enveloped extracellular viruses by budding and many unenveloped intracellular viruses following cell lysis. The lipid composition and function of such unenveloped intracellular viruses remain unknown. Detergent treatment of the intracellular viruses triggered the loss of viral lipids, capsid proteins and infectivity. Enzymatic digestion of the viral lipids with phospholipases and sphingomyelinase retained the viral capsid proteins but reduced infectivity. Over 220 lipid species were identified and quantified from the viruses and its producer cells by electrospray ionization mass spectrometry. Ten caspid proteins that dissociated from the viruses following the detergent treatments were identified by MALDI-TOF/TOF-MS/MS. Five of them were demonstrated to be lipid-binding proteins. This is the first research detailing the lipidome and lipid–protein interactions of an unenveloped virus. The identified lipid species and lipid-binding proteins will facilitate further studies of the viral assembly, egress and entry.
Journal of Virology | 2011
Bich Ngoc Tran; Li Ming Chen; Yang Liu; Jinlu Wu; Adrián Velázquez-Campoy; J. Sivaraman; Choy Leong Hew
ABSTRACT Singapore grouper iridovirus (SGIV), a major pathogen of concern for grouper aquaculture, has a double-stranded DNA (dsDNA) genome with 162 predicted open reading frames, for which a total of 62 SGIV proteins have been identified. One of these, ORF158L, bears no sequence homology to any other known protein. Knockdown of orf158L using antisense morpholino oligonucleotides resulted in a significant decrease in virus yield in grouper embryonic cells. ORF158L was observed in nuclei and virus assembly centers of virus-infected cells. This observation led us to study the structure and function of ORF158L. The crystal structure determined at 2.2-Å resolution reveals that ORF158L partially exhibits a structural resemblance to the histone binding region of antisilencing factor 1 (Asf1), a histone H3/H4 chaperon, despite the fact that there is no significant sequence identity between the two proteins. Interactions of ORF158L with the histone H3/H4 complex and H3 were demonstrated by isothermal titration calorimetry (ITC) experiments. Subsequently, the results of ITC studies on structure-based mutants of ORF158L suggested Arg67 and Ala93 were key residues for histone H3 interactions. Moreover, a combination of approaches of ORF158L knockdown and isobaric tags/mass spectrometry for relative and absolute quantifications (iTRAQ) revealed that ORF158L may be involved in both the regulation and the expression of histone H3 and H3 methylation. Our present studies suggest that ORF158L may function as a histone H3 chaperon, enabling it to control host cellular gene expression and to facilitate viral replication.
Virology | 2010
Yingjie Liu; Jinlu Wu; Hu Chen; Choy Leong Hew; Jie Yan
The White Spot Syndrome Virus (WSSV) has a large circular double-stranded DNA genome of around 300kb and it replicates in the nucleus of the host cells. The machinery of how the viral DNA is packaged has been remained unclear. VP15, a highly basic protein, is one of the major capsid proteins found in the virus. Previously, it was shown to be a DNA binding protein and was hypothesized to participate in the viral DNA packaging process. Using Atomic Force Microscopy imaging, we show that the viral DNA is associated with a (or more) capsid proteins. The organized viral DNA qualitatively resembles the conformations of VP15 induced DNA condensates in vitro. Furthermore, single-DNA manipulation experiments revealed that VP15 is able to condense single DNA against forces of a few pico Newtons. Our results suggest that VP15 may aid in the viral DNA packaging process by directly condensing DNA.
Scientific Reports | 2016
Yang Liu; Bich Ngoc Tran; Fan Wang; Puey Ounjai; Jinlu Wu; Choy Leong Hew
Iridovirid infection is associated with the catastrophic loss in aquaculture industry and the population decline of wild amphibians and reptiles, but none of the iridovirid life cycles have been well explored. Here, we report the detailed visualization of the life cycle of Singapore grouper iridovirus (SGIV) in grouper cells by cryo-electron microscopy (cryoEM) and tomography (ET). EM imaging revealed that SGIV viral particles have an outer capsid layer, and the interaction of this layer with cellular plasma membrane initiates viral entry. Subsequent viral replication leads to formation of a viral assembly site (VAS), where membranous structures emerge as precursors to recruit capsid proteins to form an intermediate, double-shell, crescent-shaped structure, which curves to form icosahedral capsids. Knockdown of the major capsid protein eliminates the formation of viral capsids. As capsid formation progresses, electron-dense materials known to be involved in DNA encapsidation accumulate within the capsid until it is fully occupied. Besides the well-known budding mechanism through the cell periphery, we demonstrate a novel budding process in which viral particles bud into a tubular-like structure within vacuoles. This budding process may denote a new strategy used by SGIV to disseminate viral particles into neighbor cells while evading host immune response.
Virus Research | 2013
Lili Wang; Qing Yun Chong; Jinlu Wu
Singapore grouper iridovirus (SGIV) is a major viral pathogen that can cause substantial economic losses in aquaculture, but its genome replication, organization and package are largely unknown. We isolated SGIV protein-DNA core by freeze-thaw lysis of viral particles and gradient centrifugation. Twelve proteins were identified from the core by mass spectrometry. ORF008L, one of the core proteins, was identified as a collagen-like protein and its DNA binding ability was demonstrated by electrophoretic mobility shift assay (EMSA). Binding of ORF008L to DNA was neither sequence specific nor pH dependent, and it protected DNA from degradation by DNase I in vitro. These results suggest that ORF008L may play a role in protection or stabilization of the viral genome during infection.
Scientific Reports | 2015
Fan Wang; Yang Liu; Yi Zhu; Bich Ngoc Tran; Jinlu Wu; Choy Leong Hew
Singapore Grouper Iridovirus (SGIV) is a member of nucleo cytoplasmic large DNA viruses (NCLDV). This paper reports the functional analysis of ORF75R, a major structural protein of SGIV. Immuno fluorescence studies showed that the protein was accumulated in the viral assembly site. Immunogold-labelling indicated that it was localized between the viral capsid shell and DNA core. Knockdown of ORF75R by morpholinos resulted in the reduction of coreshell thickness, the failure of DNA encapsidation, and the low yield of infectious particles. Comparative proteomics further identified the structural proteins affected by ORF75R knockdown. Two-dimensional gel electrophoresis combined with proteomics demonstrated that ORF75R was phosphorylated at multiple sites in SGIV-infected cell lysate and virions, but the vast majority of ORF75R in virions was the dephosphorylated isoform. A kinase assay showed that ORF75R could be phosphorylated in vitro by the SGIV structural protein ORF39L. Addition of ATP and Mg2+ into purified virions prompted extensive phosphorylation of structural proteins and release of ORF75R from virions. These data suggest that ORF75R is a novel scaffold protein important for viral assembly and DNA encapsidation, but its phosphorylation facilitates virion disassembly. Compared to proteins from other viruses, we found that ORF75R shares common features with herpes simplex virus VP22.