Jinqing Huang
Sun Yat-sen University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jinqing Huang.
Journal of the American Chemical Society | 2012
Jiani Ma; Tao Su; Li; Du W; Jinqing Huang; Xiangguo Guan; David Phillips
The photophysics and photochemical reactions of 2-(1-hydroxyethyl) 9,10-anthroquinone (2-HEAQ) were studied using femtosecond transient absorption (fs-TA), nanosecond transient absorption (ns-TA), and nanosecond time-resolved resonance Raman (ns-TR(3)) spectroscopy techniques and density functional theory (DFT) calculations. In acetonitrile, 2-HEAQ underwent efficient intersystem crossing to the triplet excited state ((2-HEAQ)(3)). A typical photoreduction reaction for aromatic ketones took place via production of a ketyl radical intermediate for 2-HEAQ in isopropanol. In water-containing solutions with pH values between 2 and 10, an unusual photoredox reaction reported by Wan and co-workers was detected and characterized. Observation of the protonated species in neutral and acidic aqueous solutions by fs-TA spectra indicated the carbonyl oxygen of (2-HEAQ)(3) was protonated initially and acted as a precursor of the photoredox reaction. The preference of the photoredox reaction to occur under moderate acidic conditions compared to neutral condition observed using ns-TR(3) spectroscopy was consistent with results from DFT calculations, which suggested protonation of the carbonyl group was the rate-determining step. Under stronger acidic conditions (pH 0), although the protonated (2-HEAQ)(3) was formed, the predominant reaction was the photohydration reaction instead of the photoredox reaction. In stronger basic solutions (pH 12), (2-HEAQ)(3) decayed with no obvious photochemical reactions detected by time-resolved spectroscopic experiments. Reaction mechanisms and key reactive intermediates for the unusual photoredox reaction were elucidated from time-resolved spectroscopy and DFT results. A brief discussion is given of when photoredox reactions may likely take place in the photochemistry of aromatic carbonyl-containing compounds and possible implications for using BP and AQ scaffolds for phototrigger compounds.
Journal of Physical Chemistry A | 2014
Jinqing Huang; Chi Shun Yeung; Jiani Ma; Emma R. Gayner; David Phillips
Trichloroethylene oxide is a downstream product in the oxidative metabolism of trichloroethylene (TCE) and it may be involved in cytochrome P450 inactivation, protein function destruction, and nucleic acid base alkalization. To explore the hydrolysis mechanism of the decomposition of TCE oxide, an investigation using Second-order Møller-Plesset perturbation theory in conjunction with density functional theory has been conducted to analyze the effect of the water solvation shell on probable reaction steps. The decomposition of TCE oxide is accelerated by coordinated water molecules (up to seven), which reveals that water molecules can help to solvate the TCE oxide molecule and activate the release of the Cl(-) leaving group. After the opening of the epoxide ring, several pathways are proposed to account for the dehalogenation step along with the formation of CO as well as three carboxylic acids (formic acid, glyoxylic acid, and dichloroacetic acid). The predominant pathways were examined by comparing the computed activation energies for the formation of the products to each other for the possible reaction steps examined in this work. After rationally analyzing the computational results, the ring-opening reaction has been identified as the rate-determining step. The rate constant estimated for the TCE oxide decomposition from the calculations performed here was found to be reasonably consistent with previous experimental observations reported in the literature.
Journal of Organic Chemistry | 2014
Jiadan Xue; Lili Du; Ruixue Zhu; Jinqing Huang; David Phillips
The metabolic activation of a number of aromatic amine compounds to arylnitrenium ions that can react with DNA to form covalent adducts has been linked to carcinogenesis. Guanine in DNA has been shown to be the main target of N-containing carcinogens, and many monomeric guanine derivatives have been utilized as models for product analysis and spectroscopic investigations to attempt to better understand the reaction mechanisms of DNA with arylnitrenium ions. However, there are still important unresolved issues regarding how arylnitrenium ions attack guanine residues in DNA oligomers. In this article, we employed ns-TA and ns-TR(3) spectroscopies to directly observe the reaction of the 2-fluorenylnitrenium ion with selected DNA oligomers, and we detected an intermediate possessing a similar C8 structure as the intermediates produced from the reaction of monomeric guanosine derivatives with arylnitrenium ions. Our results suggest that the oligomeric structure can lead to a faster reaction rate of arylnitrenium ions with guanine residues in DNA oligomers and the reaction of arylnitrenium ions take place in a manner similar to reactions with monomeric guanosine derivatives.
Journal of Organic Chemistry | 2013
Jiani Ma; Tao Su; Ming-De Li; Xiting Zhang; Jinqing Huang; David Phillips
The photophysical and photochemical reactions of 3-methylbenzophenone (3-MeBP) and 4-methylbenzophenone (4-MeBP) were investigated using femtosecond transient absorption (fs-TA) and nanosecond time-resolved resonance Raman (ns-TR(3)) spectroscopy and density functional theory (DFT) calculations. 3-MeBP and 4-MeBP were observed to behave similarly to their parent compound benzophenone (BP) in acetonitrile and isopropyl alcohol solvents. However, in acidic aqueous solutions, an unusual acid-catalyzed proton exchange reaction (denoted the m-methyl activation) of 3-MeBP (with a maximum efficiency at pH 0) is detected to compete with a photohydration reaction. In contrast, only the photohydration reaction was observed for 4-MeBP under the acidic pH conditions investigated. How the m-methyl activation takes place after photolysis of 3-MeBP in acid aqueous solutions is briefly discussed and compared to related photochemistry of other meta-substituted aromatic carbonyl compounds.
Journal of Physical Chemistry B | 2015
Ming-De Li; Jinqing Huang; Mingyue Liu; Song-Bo Li; Jiani Ma; David Phillips
The formation mechanism of ketyl radicals and several other selective photoreactions of benzophenone and its derivatives are initiated by the protonation of their triplet state and have been investigated using nanosecond time-resolved resonance Raman spectroscopy (ns-TR(3)) in solutions of varying conditions. Evidence is found that the ketyl radical is generated by the combined action of a ketone protonation and a subsequent electron transfer based on the results from previous studies on the photochemistry and photophysics of benzophenone and the ns-TR(3) results reported here for benzophenone, 1,4-dibenzoylbenzene, 3-(hydroxymethyl)benzophenone, and ketoprofen in neutral and acidic solution. In order to better understand the role of the protonated ketone, results are summarized for some selective photochemical reactions of benzophenone and its derivatives induced by protonation in acidic solutions. For the parent benzophenone, the protonation of the ketone leads to the photohydration reactions at the ortho- and meta-positions of the benzene ring in acidic aqueous solutions. For 3-(hydroxymethyl)benzophenone, the protonation promotes an interesting photoredox reaction to become very efficient and the predominant reaction in a pH = 2 aqueous solution. While for ketoprofen, the protonation can initiate a solvent-mediated excited-state intramolecular proton transfer (ESIPT) from the carboxyl group to the carbonyl group that then leads to a decarboxylation reaction in a pH = 0 acidic aqueous solution. We briefly discuss the key role of the protonation of the ketone in the photochemistry of these aromatic ketones.
Optics Letters | 2016
Jinqing Huang; Alexander Parobek; Ziad Ganim
Femtosecond mid-infrared (IR) supercontinuum generation in gas media provides a broadband source suited for time-domain spectroscopies and microscopies. This technology has largely utilized <100 fs Ti:sapphire pump lasers. In this Letter, we describe the first plasma generation mid-IR source based on a 1030 nm, 171 fs Yb:KGW laser system; when its first three harmonics are focused in air, a conical mode supercontinuum is generated that spans <1000 to 2700 cm-1 with a 190 pJ pulse energy and 0.5% RMS stability.
Journal of Organic Chemistry | 2015
Jinqing Huang; Jiani Ma; Ming-De Li; Mingyue Liu; Xiting Zhang; David Lee Phillips
The efficient photosubstitution reaction of m-fluorobenzophenone and the related photohydration reactions were systematically investigated in acidic aqueous solutions. The mechanisms and intermediates were directly characterized by femtosecond transient absorption spectroscopy and nanosecond time-resolved resonance Raman spectroscopy, which is supported by density functional theory calculations. This photosubstitution was found to be a two-step process, based on the observation of a meta-hydration intermediate. The protonation of the ketone was confirmed as a crucial precursor step for further photochemical reactions as indicated by the observation of the absorption spectrum of an excited triplet protonated species. More interestingly, the efficient photosubstitution reaction could selectively occur under specific conditions. Control experiments on a series of halogen-substituted benzophenones were conducted to study the influence of the solution acidity, substituent positions, and the kind of substituted halogens on the efficiency in forming the corresponding hydroxyl photosubstitution product. Some practical conditions in predicting the efficiency of the photosubstitution reaction of interest are summarized, and they were successfully used to predict when the photosubstitution reaction takes place for some other halogen-substituted benzophenone derivatives. The driving force of this photosubstitution reaction may provide insights into several possible applications which are also briefly discussed.
Scientific Reports | 2016
Mingyue Liu; Ming-De Li; Jinqing Huang; Tianlu Li; Han Liu; Xuechen Li; David Phillips
Photodeprotection is an important reaction that has been attracting broad interest for use in a variety of applications. Recent advances in ultrafast and vibrational time-resolved spectroscopies can facilitate obtaining data to help unravel the reaction mechanisms involving in the photochemical reactions of interest. The kinetics and reaction mechanisms for the photodeprotection reactions of ketoprofen derivatives containing three different substituents (ibuprofen, Br and I) were investigated by femtosecond transient absorption (fs-TA) and nanosecond time-resolved resonance Raman (ns-TR3) spectroscopy methods in phosphate buffered solutions (PBS). Fs-TA allows us to detect the decay kinetics of the triplet species as the key precursor for formation of a carbanion species for three different substituents attached to ketoprofen. To characterize the structural and electronic properties of the corresponding carbanion and triplet intermediates, TR3 spectroscopic experiments were conducted. The transient spectroscopy work reveals that the different substituents affect the photodecarboxylation reaction to produce carbon dioxide which in turn influences the generation of the carbanion species which determines the rate of the photorelease of the functional groups attached on the ketoprofen parent molecule. The fingerprint TR3 spectroscopy results suggest that ketoprofen derivatives may be deactivated to produce a triplet carbanion when increasing the atom mass of the halogen atoms.
Journal of Luminescence | 2010
Xinguo Zhang; Jilin Zhang; Jinqing Huang; Xueping Tang; Menglian Gong
Optical Materials | 2009
Xinguo Zhang; Xiaoxiao Wang; Jinqing Huang; Jinxin Shi; Menglian Gong