Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jinqing Li is active.

Publication


Featured researches published by Jinqing Li.


Diabetes | 2011

Diabetic Downregulation of Nrf2 Activity via ERK Contributes to Oxidative Stress–Induced Insulin Resistance in Cardiac Cells In Vitro and In Vivo

Yi Tan; Tomonaga Ichikawa; Jinqing Li; Qiusheng Si; Huaitao Yang; Xiangbai Chen; Curtis S. Goldblatt; Colin J. Meyer; Xiaokun Li; Lu Cai; Taixing Cui

OBJECTIVE Oxidative stress is implicated in cardiac insulin resistance, a critical risk factor for cardiac failure, but the direct evidence remains missing. This study explored a causal link between oxidative stress and insulin resistance with a focus on a regulatory role of redox sensitive transcription factor NF-E2–related factor 2 (Nrf2) in the cardiac cells in vitro and in vivo. RESEARCH DESIGN AND METHODS Chronic treatment of HL-1 adult cardiomyocyte with hydrogen peroxide led to insulin resistance, reflected by a significant suppression of the insulin-induced glucose uptake. This was associated with an exaggerated phosphorylation of extracellular signal–related kinase (ERK). Although U0126, an ERK inhibitor, enhanced insulin sensitivity and attenuated oxidative stress–induced insulin resistance, LY294002, an inhibitor of phosphoinositide 3-kinase (PI3K), worsened the insulin resistance. Moreover, insulin increased Nrf2 transcriptional activity, which was blocked by LY294002 but enhanced by U0126. Forced activation of Nrf2 by adenoviral over-expression of Nrf2 inhibited the increased ERK activity and recovered the blunted insulin sensitivity on glucose uptake in cardiomyocytes that were chronically treated with H2O2. In the hearts of streptozotocin-induced diabetic mice and diabetic patients Nrf2 expression significantly decreased along with significant increases in 3-nitrotyrosine accumulation and ERK phosphorylation, whereas these pathogenic changes were not observed in the heart of diabetic mice with cardiac-specific overexpression of a potent antioxidant metallothionein. Upregulation of Nrf2 by its activator, Dh404, in cardiomyocytes in vitro and in vivo prevented hydrogen peroxide– and diabetes-induced ERK activation and insulin-signaling downregulation. CONCLUSIONS ERK-mediated suppression of Nrf2 activity leads to the oxidative stress–induced insulin resistance in adult cardiomyocytes and downregulated glucose utilization in the diabetic heart.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2009

Nrf2 Protects Against Maladaptive Cardiac Responses to Hemodynamic Stress

Jinqing Li; Tomonaga Ichikawa; Luis Villacorta; Joseph S. Janicki; Gregory L. Brower; Masayuki Yamamoto; Taixing Cui

Background—Reactive oxygen species (ROS) play an important role in the maintenance of cardiovascular homeostasis. The present study sought to determine whether nuclear factor erythroid-2 related factor 2 (Nrf2), a master gene of the endogenous antioxidant defense system, is a critical regulator of the cardiac hypertrophic response to pathological stress. Methods and Results—Cardiac hypertrophy and dysfunction were established in mice by transverse aortic constriction (TAC). Nrf2 expression was transiently increased and then declined to the basal level while impairment of cardiac function proceeded. The knockout of Nrf2 (Nrf2−/−) did not cause any apparent structural and functional abnormalities in the unstressed heart. However, Nrf2−/− mice after TAC developed pathological cardiac hypertrophy, significant myocardial fibrosis and apoptosis, overt heart failure, and increased mortality, which were associated with elevated myocardial levels of 4-hydroxy-2-nonenal and 8-hydroxydeoxyguanosine and a complete blockade of the myocardial expression of several antioxidant genes. Overexpression of Nrf2 dramatically inhibited hypertrophic factor–induced ROS production and growth in both cardiomyocytes and cardiac fibroblasts, whereas knockdown of Nrf2 exerted opposite effects in both cells. Conclusions—These findings demonstrate that activation of Nrf2 provides a novel mechanism to protect the murine heart against pathological cardiac hypertrophy and heart failure via suppressing oxidative stress.


Expert Opinion on Therapeutic Targets | 2009

Targeting the Nrf2 pathway against cardiovascular disease

Jinqing Li; Tomonaga Ichikawa; Joseph S. Janicki; Taixing Cui

Nuclear factor E2-related factor 2 (Nrf2) is a transcription factor that controls the basal and inducible expression of a battery of antioxidant genes and other cytoprotective Phase II detoxifying enzymes. Nrf2 is ubiquitously expressed in the cardiovascular system. While several Nrf2 downstream genes have been implicated in protection against the pathogenesis of cardiovascular diseases, the precise role of Nrf2 in the cardiovascular system remains to be elucidated. Nevertheless, mounting evidence has revealed that Nrf2 is a critical regulator of cardiovascular homeostasis via the suppression of oxidative stress, a major causative factor for the development and progression of cardiovascular diseases. Therefore, Nrf2 promises to be an attractive therapeutic target for the treatment of cardiovascular disease. Herein, we review the current literature that suggests that Nrf2 is a valuable therapeutic target for cardiovascular disease, as well as experiments that illustrate the mechanisms of Nrf2 cardioprotection.


PLOS ONE | 2009

Dihydro-CDDO-trifluoroethyl amide (dh404), a novel Nrf2 activator, suppresses oxidative stress in cardiomyocytes.

Tomonaga Ichikawa; Jinqing Li; Colin J. Meyer; Joseph S. Janicki; Mark Hannink; Taixing Cui

Targeting Nrf2 signaling appears to be an attractive approach for the treatment of maladaptive cardiac remodeling and dysfunction; however, pharmacological modulation of the Nrf2 pathway in the cardiovascular system remains to be established. Herein, we report that a novel synthetic triterpenoid derivative, dihydro-CDDO-trifluoroethyl amide (dh404), activates Nrf2 and suppresses oxidative stress in cardiomyocytes. Dh404 interrupted the Keap1-Cul3-Rbx1 E3 ligase complex-mediated Nrf2 ubiquitination and subsequent degradation saturating the binding capacity of Keap1 to Nrf2, thereby rendering more Nrf2 to be translocated into the nuclei to activate Nrf2-driven gene transcription. A mutant Keap1 protein containing a single cysteine-to-serine substitution at residue 151 within the BTB domain of Keap1 was resistant to dh404-induced stabilization of Nrf2 protein. In addition, dh404 did not dissociate the interaction of Nrf2 with the Keap1-Cul3-Rbx1 E3 ligase complex. Thus, it is likely that dh404 inhibits the ability of Keap1-Cul3-Rbx1 E3 ligase complex to target Nrf2 for ubiquitination and degradation via modifying Cys-151 of Keap1 to change the conformation of the complex. Moreover, dh404 was able to stabilize Nrf2 protein, to enhance Nrf2 nuclear translocation, to activate Nrf2-driven transcription, and to suppress angiotensin II (Ang II)-induced oxidative stress in cardiomyocytes. Knockdown of Nrf2 almost blocked the anti-oxidative effect of dh404. Dh404 activated Nrf2 signaling in the heart. Taken together, dh404 appears to be a novel Nrf2 activator with a therapeutic potential for cardiac diseases via suppressing oxidative stress.


Cardiovascular Research | 2011

Up-regulation of p27kip1 contributes to Nrf2-mediated protection against angiotensin II-induced cardiac hypertrophy

Jinqing Li; Cheng Zhang; Yifan Xing; Joseph S. Janicki; Masayuki Yamamoto; Xing Li Wang; Dongqi Tang; Taixing Cui

AIMS Nuclear factor erythroid-2-related factor 2 (Nrf2) appears to be a negative regulator of maladaptive cardiac remodelling and dysfunction; however, a potential of the Nrf2-mediated cardiac protection in diverse pathological settings remains to be determined. This study was aimed to explore the role of Nrf2 in angiotensin II (Ang II)-induced cardiac hypertrophy. METHODS AND RESULTS Littermate wild-type (WT) and Nrf2 knockout (Nrf2(-/-)) mice were administered Ang II via osmotic mini-pumps for 2 weeks to induce cardiac hypertrophy. Elevation of blood pressure by the continuous Ang II infusion was comparable between WT and Nrf2(-/-) mice. Relative to WT mice, however, Nrf2(-/-) mice exhibited exaggerated myocardial oxidative stress with an impaired induction of a group of antioxidant genes and increased cardiac hypertrophy in response to the sustained Ang II stimulation. In cultured cardiomyocytes, adenoviral overexpression of Nrf2 shRNA enhanced Ang II-induced reactive oxygen species (ROS) production and protein synthesis, whereas adenoviral overexpression of Nrf2 exerted opposite effects. Moreover, Nrf2 deficiency exacerbated Ang II-induced down-regulation of p27(kip1) expression in the heart via a mechanism of post-transcriptional regulation. In contrast, adenoviral overexpression of Nrf2 increased p27(kip1) protein but not mRNA expression and reversed Ang II-induced down-regulation of p27(kip1) protein expression in cultured cardiomyocytes by suppressing ROS formation. Finally, the enhancement of Ang II-induced hypertrophic growth due to the Nrf2 deficiency was negated by overexpressing p27(kip1) in cultured cardiomyocytes. CONCLUSION The Nrf2-p27(kip1) pathway serves as a novel negative feedback mechanism in Ang II-induced pathogenesis of cardiac hypertrophy, independent of changes in blood pressure.


Journal of Ethnopharmacology | 2010

An essential role of Nrf2 in American ginseng-mediated anti-oxidative actions in cardiomyocytes.

Jinqing Li; Tomonaga Ichikawa; Yu Jin; Lorne J. Hofseth; Prakash S. Nagarkatti; Mitzi Nagarkatti; Anthony Windust; Taixing Cui

AIM OF THE STUDY Ginseng has been used as a folk medicine for thousands of years in Asia, and has become a popular herbal medicine world-wide. Recent studies have revealed that ginseng, including American ginseng, exerts antioxidant effects in the cardiovascular system; however, the underlying mechanisms are not fully understood. Thus, we investigated role of Nrf2, a master transcription factor of endogenous anti-oxidative defense systems, in the regulation of American ginseng-mediated anti-oxidative actions in cardiomyocytes. MATERIALS AND METHODS A standardized crude extract of American ginseng was supplied by the National Research Council of Canada, Institute for National Measurement Standards. H9C2 cells, a rat cardiomyocyte cell line, were exposed to angiotensin II (Ang II) or tumor necrosis factor alpha (TNFalpha) to induce oxidative stress that was examined by measuring formation of reactive oxygen and nitrogen species. Oxidative stress-induced cell death was induced by exogenous addition of hydrogen peroxide (H(2)O(2)). Proteins were measured by Western blot and mRNA expression was determined by quantitative real time PCR. Nrf2-driven transcriptional activity was assessed by antioxidant response element (ARE)-luciferase reporter assay. Direct Nrf2 binding to its target gene promoters was determined by chromatin immunoprecipitation assay. Adenoviral over-expression of Nrf2 shRNA was utilized to knock down Nrf2 in H9C2 cells. Immunochemical staining was applied for Nrf2 expression in the heart. RESULTS American ginseng induced dramatic increases in Nrf2 protein expression, Nrf2 nuclear translocation, Nrf2 transcriptional activity, direct Nrf2 binding to its target gene promoters, and expression of a group of anti-oxidative genes driven by Nrf2 in H9C2 cells. In addition, American ginseng inhibited Ang II- or TNFalpha-induced free radical formation and H(2)O(2)-induced cell death in H9C2 cells over-expressed with control shRNA but not in the cells over-expressed with Nrf2 shRNA. Finally, oral administration of American ginseng markedly increased Nrf2 activity in murine hearts. CONCLUSION These results demonstrate that American ginseng suppresses oxidative stress and oxidative stress-induced cell death in cardiomyocytes through activating the Nrf2 pathway, thereby providing cardioprotection against pathological cardiac remodeling.


Journal of Ethnopharmacology | 2009

American ginseng preferentially suppresses STAT/iNOS signaling in activated macrophages

Tomonaga Ichikawa; Jinqing Li; Prakash S. Nagarkatti; Mitzi Nagarkatti; Lorne J. Hofseth; Anthony Windust; Taixing Cui

AIM OF THE STUDY Ginseng has been used as general tonic for thousands of years in Asia and becomes a popular herbal medicine all over the world. However, the cellular and molecular mechanisms underlying its benefit effects are less explored. Thus, we investigated the effect of a crude extract from Panax quinquefolius (American ginseng) on suppression of pro-inflammatory responses in macrophages with a focus on signal transducer and activator of transcription (STAT) signaling. MATERIALS AND METHODS The crude extract of American ginseng that was supplied by the National Research Council of Canada, Institute for National Measurement Standards (NRCC-INMS) was freshly solvated in Dulbeccos Modified Eagle Medium (DMEM) prior to each experiment. RAW264.7 cells, a murine macrophage cell line, were exposed to lipopolysaccharide (LPS) to induce inflammatory responses such as expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2). Proteins were measured by Western blot and mRNA expression was determined by quantitative real-time PCR (Q-PCR). Activator protein 1 (AP-1)-, nuclear factor-kappaB (NF-kappaB)- and STAT-mediated transcriptional activities were investigated using luciferase reporter constructs. RESULTS American ginseng inhibited LPS-induced iNOS expression; however, it did not affect LPS-induced COX2 expression. While American ginseng had no impact on LPS-induced activation of AP-1 or NF-kappaB pathways, it dramatically inhibited LPS-induced activation of STAT signaling. Moreover, American ginseng and AG490, an inhibitor of STAT cascade, synergistically suppressed the LPS-induced iNOS expression. CONCLUSION American ginseng selectively inhibits the expression of iNOS via suppression of STAT cascade but not NF-kappaB and AP-1 pathways in inflamed macrophages. Such a preferential suppression of STAT/iNOS cascade by American ginseng might have therapeutic potential for inflammatory diseases with over-activation of iNOS.


PLOS ONE | 2012

Triterpenoid dihydro-CDDO-trifluoroethyl amide protects against maladaptive cardiac remodeling and dysfunction in mice: a critical role of Nrf2.

Yifan Xing; Ting Niu; Wenjuan Wang; Jinqing Li; Siying Li; Joseph S. Janicki; Stacey Ruiz; Colin J. Meyer; Xing Li Wang; Dongqi Tang; Yu-Xia Zhao; Taixing Cui

Background and Aims Nuclear factor E2-related factor 2 (Nrf2) appears to be an attractive therapeutic target for the treatment of cardiac disease. We investigated whether a synthetic triterpenoid derivative of dihydro-CDDO-trifluoroethylamide (dh404), a novel Nrf2 activator, protects against pathological cardiac responses to hemodynamic stress in mice. Methods Cardiac maladaptive remodeling and dysfunction were established by transverse aortic constriction (TAC) in mice. Hypertrophic growth of rat neonatal cardiomyocytes was induced by angiotensin II (Ang II). Cell death of rat neonatal cardiomyocytes was induced with hydrogen peroxide (H2O2). Cellular proliferation of rat neonatal cardiac fibroblasts was induced by Ang II, norepinephrine (NE) and phenylephrine (PE). Protein expression was assessed by immunochemical staining and Western blots. Gene expression was determined by real time reverse transcription-polymerase chain reaction (Q-PCR). Results TAC suppressed myocardial Nrf2 expression, increased myocardial 4-hydroxy-2-nonenal and 8-hydroxydeoxyguanosine levels, and induced cardiac hypertrophy, fibrosis and apoptosis, and overt heart failure and death in mice. Administration of dh404 inhibited the pathological cardiac remodeling and dysfunction, and reduced the mortality. Moreover, dhd404 elevated myocardial levels of Nrf2 and Nrf2 nuclear translocation with a dramatic suppression of the oxidative stress in the heart. Dh404 inhibited hypertrophic growth and death in primary culture of rat neonatal cardiomyocytes and suppressed proliferation in primary culture of rat neonatal cardiac fibroblasts. However, these effects of dh404 were blunted by knocking down of Nrf2. Conclusion These findings demonstrate that dh404 prevents pathological cardiac remodeling and dysfunction by activating Nrf2, indicating a therapeutic potential of dh404 for cardiac disease.


Biochemical and Biophysical Research Communications | 2010

Ubiquitin carboxyl terminal hydrolase L1 negatively regulates TNFα-mediated vascular smooth muscle cell proliferation via suppressing ERK activation

Tomonaga Ichikawa; Jinqing Li; Xiaoyu Dong; Jay D. Potts; Dongqi Tang; Dong-Sheng Li; Taixing Cui

Deubiquitinating enzymes (DUBs) appear to be critical regulators of a multitude of processes such as proliferation, apoptosis, differentiation, and inflammation. We have recently demonstrated that a DUB of ubiquitin carboxyl terminal hydrolase L1 (UCH-L1) inhibits vascular lesion formation via suppressing inflammatory responses in vasculature. However, the precise underlying mechanism remains to be defined. Herein, we report that a posttranscriptional up-regulation of UCH-L1 provides a negative feedback to tumor necrosis factor alpha (TNFalpha)-mediated activation of extracellular signal-regulated kinases (ERK) and proliferation in vascular smooth muscle cells (VSMCs). In rat adult VSMCs, adenoviral over-expression of UCH-L1 inhibited TNFalpha-induced activation of ERK and DNA synthesis. In contrast, over-expression of UCH-L1 did not affect platelet derived growth factor (PDGF)-induced VSMC proliferation and activation of growth stimulating cascades including ERK. TNFalpha hardly altered UCH-L1 mRNA expression and stability; however, up-regulated UCH-L1 protein expression via increasing UCH-L1 translation. These results uncover a novel mechanism by which UCH-L1 suppresses vascular inflammation.


Biochemical and Biophysical Research Communications | 2009

An emerging role of deubiquitinating enzyme cylindromatosis (CYLD) in the tubulointerstitial inflammation of IgA nephropathy

Tai-Gen Cui; Tomonaga Ichikawa; Ming Yang; Xiaoyu Dong; Jinqing Li; Taixing Cui

Immunoglobulin A (IgA) nephropathy is an important cause of end-stage kidney disease (ESKD). Tubulointerstitial inflammation and subsequent fibrosis appear to be a major contributor of the disease progression to ESKD; however, the underlying mechanism is poorly understood. Herein, we report that a unique feature of CYLD expression in kidneys of patients with IgA nephropathy and a CYLD-mediated negative regulation of inflammatory responses in human tubular epithelial cells. Immunochemical staining revealed that CYLD was predominantly expressed in renal tubular epithelial cells in 81% of the patients (37 cases) with proteinuric IgA nephropathy. Patients with positive CYLD had significantly less tubulointerstitial lesions and higher estimated glomerular filtration rate (eGFR) levels when compared with those negative. Logistic regression analysis indicated that eGFR was a predictor for the CYLD expression. In cultured human tubular epithelial HK-2 cells, tumor necrosis factor-alpha (TNFalpha) up-regulated CYLD expression. Adenoviral knockdown of CYLD did not affect albumin-, hydrogen peroxide (H(2)O(2))-, tunicamycin- or thapsigargin-induced cell death; however, it enhanced TNFalpha-induced expression of intracellular adhesion molecule (ICAM)-1 as well as activation of c-Jun N-terminal kinase (JNK). Moreover, monocyte adhesion to the TNFalpha-inflamed HK-2 cells was significantly increased by the CYLD shRNA approach. Taken together, our results suggest that CYLD negatively regulates tubulointertitial inflammatory responses via suppressing activation of JNK in tubular epithelial cells, putatively attenuating the progressive tubulointerstitial lesions in IgA nephropathy.

Collaboration


Dive into the Jinqing Li's collaboration.

Top Co-Authors

Avatar

Taixing Cui

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Tomonaga Ichikawa

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Joseph S. Janicki

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Yifan Xing

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lorne J. Hofseth

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Mitzi Nagarkatti

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge